

Alternate Methodology for Electricity Demand Assessment and Forecasting

World Energy Council India

Table of Contents

Abbreviations	10
1. Executive Summary	11
1.1. Objective and scope of the study	12
2. Review of forecasting methodologies of major sectors in India	
2.1. Coal	13
2.1.1. Introduction	
2.1.2. Demand projection of Coal	14
2.1.3. Summary	
2.2. Renewable Energy	22
2.2.1. Introduction	
2.2.2. Renewable Energy Potential	
2.2.3. Projections for renewables	24
2.2.4. RE Actual Implementation vs. Targets	25
2.2.5. Targets beyond 2022 for Renewables	26
2.2.6. Summary	26
2.3. Oil & Natural Gas	27
2.3.1. Introduction	27
2.3.2. Oil and Gas Potential	28
2.3.3. Oil & Gas Projections	
2.3.4. Summary	
2.4. Power	32
2.4.1. Introduction	32
2.4.2. Review of the existing methodologies	32
2.4.3. Demand forecasting	41
2.5. Summary	49
3. Linkage between primary energy and power demand	50
3.1. India: Current energy scenario	50
3.2. Historical linkage between Primary Energy and Power demand	50
3.3. Effect of New influencers on the Power sector	52
3.4. Effect of New Influencers on the Primary Energy	54
3.5. Expected linkage between Primary energy and power demand	55
4. Gaps in existing demand assessment and forecasting methodologies	57
4.1. General gaps identified based on review of commonly employed methodologies in India	58
4.2. Gaps in forecast due to impact of economic factors	61
4.2.1. Overall economic scenario during the period when 18th EPS was prepared	62
4.2.2. Reasons for slow demand growth in FY 2013-14	63
4.3. Specific gaps on methodologies employed in forecasts by CEA	64
4.3.1. Draft National Electricity Plan, 2016	64
4.3.2. 19th Electric Power Survey, 2017	67
4.4. IESS 2047 – analysis of the gap between demand and supply projections	69
5. Proposed alternate approach and methodology	70
5.1. Proposed hybrid method	70
5.2. Use of bottom up approach	70
5.2.1. Proposed 18-step alternate methodology	71
6. Approach adopted for selected state	81
6.1. Rajasthan - Profile	81
6.2. Power sector in the state	82
6.3. Use of a bottom up approach	84

6.3.1. Forecast at Circle level	84
6.3.2. Consolidation of Circle level data	84
7. Baseline correction of historical data	87
8. Implementation of alternate methodology	97
8.1. Analysis of historical data – category wise to gather insights and understand behavior	
8.2. Selection of forecasting methods for each forecast period	
8.3. Use of trend method.	
8.4. Use of Holts-Winter's multiplicative and additive exponential smoothing	102
8.5. Identification of Independent variables	
8.6. Development of econometric equations and forecast	
8.7. Impact of Electric Vehicles	
8.8. Assessment of specific demand using end use method	
8.8.1. Railways	
8.8.2. Domestic: Power For All (PFA) and Saubhagya scheme	
8.8.3. Agriculture category	
8.8.4. Open Access and Captive	
8.9. Assessment of additional demand	
8.9.1. Housing: Chief Minister's Jan Awas Yojana / Rajasthan housing board	110
8.9.2. Review of Master Plans	
8.9.3. Jaipur Metro Rail project	
8.9.4. Smart City	
8.9.5. Delhi Mumbai Industrial Corridor	
8.9.6. Rajasthan State Industrial Development and Industrial Corporation (RIICO)	
8.10. Assessment of latent demand	
8.11. Impact of Energy Efficiency	117
8.12. Development of forecast scenarios	
8.13. Estimation of the future loss trajectory	
8.14. Estimation of load factor and peak demand	
8.15. Finalization of forecast results	
8.16. Validation of results with traditional methodologies	
9. Summary of demand forecast results	
9.1. Rajasthan – Forecast summary	
9.1.1. Forecast of Electricity consumption	
9.2. Forecast at DISCOM level	
9.2.1. JVVNL – Forecast of electricity consumption	
9.2.2. AVVNL – Forecast of electricity consumption	
9.2.3. JdVVNL – Forecast of electricity consumption	
10. Functional strategies for supply side to meet the projected demand	
10.1. Existing supply position in Rajasthan	
10.2. Options for Supply side evaluation	
10.3. Assessment of supply capacity required to meet projected demand for the state	
10.3.1. Electricity requirement of state consumers to be met by sources other than Distribution	
10.3.2. Electricity requirement to be met by Distribution utilities in the state	148
10.3.3. Projection of generation sources to meet projected electricity demand	
10.3.4. Projection of generation source to meet projected peak demand	
10.4. Projected supply position in Rajasthan	
10.5. Functional strategies for managing higher integration of renewables	
10.5.1. Managing the load curve	
10.5.2. Safe limit of RE integration without storage	
10.5.3. Impact of storage in integration	163
10.5.4. Need for capacity building	165

11. Data challenges	166
12. Recommendations	167
13. Annexure	169
13.1. Forecast results – Circle wise	169
13.1.1. Alwar	169
13.1.2. Bharatpur & Dholpur	172
13.1.3. Dausa and Karauli	175
13.1.4. Jaipur city circle	178
13.1.5. JPDC	
13.1.6. Jhalawar and Baran	
13.1.7. Kota and Bundi	
13.1.8. Sawai Madhopur and Tonk	
13.1.9. Ajmer	193
13.1.10. Bhilwara	196
13.1.11. Nagaur	
13.1.12. Udaipur	
13.1.13. Rajsamand	205
13.1.14. Chittorgarh and Pratapgarh	208
13.1.15. Banswara and Dungarour	211
13.1.16. Jhunjhunu	214
13.1.17. Sikar	217
13.1.18. Jodhpur City circle	
13.1.19. Jodhpur district circle	223
13.1.20. Jalore	226
13.1.21. Pali and Sirohi	
13.1.22. Barmer and Jaisalmer	232
13.1.23. Bikaner	235
13.1.24. Sri Ganganagar	
13.1.25. Hanumangarh	241
13.1.26. Churu	244
13.2. Sample data formats	247

List of Figures

Figure 1: Estimate reserves of coal as on March 2017. Total 308.8 BT	13
Figure 2: Coal requirement based on demand from power stations and industries	18
Figure 3: Total supply side projections	
Figure 4: Share of installed capacity	
Figure 5: Installed capacity - Wind	
Figure 6: Installed capacity - Solar	22
Figure 7: State wise estimated solar potential (GW) - NISE Estimate	23
Figure 8: State wise estimated wind power potential (GW) - NIWE estimate at 80m level	23
Figure 9: State wise estimated biomass potential (MW)	
Figure 10: State wise estimated SHP potential (MW)	24
Figure 11: Renewable Energy targets for 2022 (GW)	24
Figure 12: Renewable Energy: Target vs Actual (MW)	
Figure 13: Total projected installed capacity by FY 27. Total 640 GW	26
Figure 14: Consumption of petroleum products	27
Figure 15: Domestic production and import of oil	
Figure 16: Gas production and import	
Figure 17: Snapshot a working tab in SPSS software	
Figure 18: Consumption of Energy and Share of Electricity in Primary energy consumption	
Figure 19: Primary demand by fuel	51
Figure 20: New influencers expected to impact electricity demand- supply	
Figure 21: Periodicity and application of demand forecasting	
Figure 22: Variation between the projected demand in 18th EPS and actual demand	
Figure 23: Comparison between bottom up and top down approaches	
Figure 24: 18 Step alternate demand forecasting methodology	
Figure 25: Representation of a straight line method	
Figure 26: Case study: Time series method	
Figure 27: Case study: use of econometric forecasting technique	
Figure 28: Illustration of using additional loads in forecast	77
Figure 29: Illustration of forecast results	
Figure 30: Case study: Illustration of a loss trajectory	79
Figure 31: Rajasthan - GSDP	
Figure 32: Sectoral contribution to GVA	
Figure 33: Electricity requirement and availability scenario in Rajasthan	
Figure 34: Share of electricity demand across categories in the State	83
Figure 35: Circle wise feeder data accessed from utility	
Figure 36: Calculation of average monthly supply hours	
Figure 37: Illustrative - circle wise average supply gap	
Figure 38: Category wise monthly served and unserved demand	
Figure 39: Category wise yearly served and unserved data Figure 40: Historical data post baseline correction (Illustration)	
Figure 40. Fision car data post baseline correction (indistration) Figure 41: JPDC – Consumers: Category wise composition	
Figure 42: JPDC - Consumers: Growth over previous year Figure 43: JPDC Consumers: CAGR growth for 9 periods	
Figure 44: JPDC – Historical sales: Category wise composition	
Figure 45: JPDC - Historical sales: Growth over previous year	
Figure 46: JPDC - Historical sales: CAGR growth rates	
Figure 47: Decomposition of historical data by Holt-Winter's method	
Figure 48: Modeling of historical data using Holt-Winter's method	
Figure 49: Average consumption per domestic consumers in Rajasthan (in kWh/Consumer/Year)	
Figure 50: Comparison of trends of consumption in Rajasthan up to FY 32	
Figure 51: Illustration of served - unserved demand for the state	
Figure 52: % Actual T&D loss for the state	
Figure 53: Rajasthan: Decomposition of load factor trend (POSOCO report)	
Figure 54: Estimated load factor for the state	123
Figure 55: Historical peak demand for the state of Rajasthan	
Figure 56: Share of supply sources as of FY17	
Figure 57: Contracted capacity of Rajasthan as of February FY17 (MW)	
Figure 58: Trend of PLF for coal based thermal power stations	151

Figure 59: Scenario 1: Projected supply position (MW) and change in share of generation sources	158
Figure 60: Scenario 1: Projected supply position (MUs) and electricity to be supplied by generation sources	
Figure 61: Typical load curve in a day - Rajasthan	
Figure 62: Average generation profile of wind and solar in a day	

List of Tables

Table 1: Likely capacity addition of RES	
Table 2: Estimated Coal requirement in the year 2021-22 and 2026-27	15
Table 3: Coal requirement by Coal Power Stations (MTce)	16
Table 4: Coal requirement by Industries (MTce)	17
Table 5: Coal production projections (MT)	20
Table 6: Projections for Coal Imports as per the scenarios (MT)	20
Table 7: RPO Trajectory defined by the Government	25
Table 8: Demand projections from FY17-22 based on CAGR	28
Table 9: Segment wise demand projections	
Table 10: Energy mix as per current policy scenario	31
Table 11: Share of Oil and Gas	31
Table 12: Sample equations for univariate econometric model	36
Table 13: Sample equations for multivariate econometric model	37
Table 14: Projections at All-India level for the period FY 2016-17 to FY 2020-21	
Table 15: Projections at All-India level for the period FY 2022-23 to FY 2026-27	
Table 16: CAGR of the projections	45
Table 17: Perspective electricity demand for FY 2031-32 and 2036-37	45
Table 18: Comparison of Energy Requirement between 18th and 19th EPS	46
Table 19: Comparison of Peak demand between 18th EPS and 19th EPS	46
Table 20: Energy requirement and peak demand an all-India basis without DSM, EE measures	
Table 21: Energy requirement and peak demand an all-India basis with DSM, EE measures	
Table 22: Regression equations developed	
Table 23: Forecasts developed using both the methodologies	
Table 24: Energy Intensity	50
Table 25: Share of electricity in primary demand	
Table 26: Share of primary energy under two scenarios in 2022 and 2040	
Table 27: Comparison of Energy Requirement between 18th EPS Projections and actuals	
Table 28: Tentative list of independent variables	
Table 29: Present structure of power sector utilities	
Table 30: Consolidation of Circles for forecast	
Table 31: Monthly average supply gap of a sample circle	
Table 32: Illustrative: Extrapolation of gap in supply hours highlighted for a sample circle	
Table 33: Illustrative: Calculation of supply hours for historical data highlighted for a sample circle	
Table 34: JVVNL: Baseline corrected historical data	
Table 35: AVVNL: Baseline corrected historical data	
Table 36: JdVVNL: Baseline corrected historical data	
Table 37: JPDC (Sample Circle): Baseline corrected historical data	
Table 38: Selection of forecasting methods	
Table 39: Details of category wise approach to forecasting	
Table 40: Base forecast (Unrestricted) developed for JPDC circle using Trend method	
Table 41: Base forecast (Unrestricted) developed for JPDC circle using Holt-Winter's method	
Table 42: List of independent variables considered for econometric method	
Table 43: Econometric equations developed for the Sample circle JPDC	
Table 44: Base forecast (Unrestricted) developed for JPDC circle using Econometric method	
Table 45: Additional electricity requirement (MUs) due to EVs in Rajasthan	
Table 46: Additional electricity requirement (MUs) from Railway traction	
Table 47: Electricity requirement (MUs) from OA and Captive Table 48: Data for State housing scheme as on Oct'17	
Table 49: Major towns in Rajasthan as per population Table 50: Demand projected in the DMIC investment regions in Rajasthan	
Table 50: Demand projected in the DMIC investment regions in Rajastnan	
Table 52: Estimated latent demand due to behavioral aspect for Rajasthan (in MUs)	
Table 52: Electricity Savings potential across categories	
Table 53: Electricity Savings potential across categories Table 54: % savings estimated due to energy efficiency	
Table 54. % savings estimated due to energy enciency Table 55: Projected loss trajectory for the state	
Table 56: Calculation of energy requirement for the state	
Table 57: Rajasthan: Load factor data	
Table 58: Annual Peak demand for state: Using forecasting results using Trend method	
Table contrained in our container of out to our protocolding rootito doing from the motion and the	120

Table 59: Unrestricted peak demand of Rajasthan	123
Table 60: Monthly peak demand for the state determined using forecasting methods	
Table 61: FY 17: Actual vs Forecast for 3 methods	
Table 62: Comparison of forecast results with 19th EPS results for the State (MUs)	120
Table 63: Comparison of forecasts for year FY32 (MUs)	
Table 64: Summary of the electricity requirement at state level	
Table 65: Summary of peak demand at state level	
Table 66: Demand projections for the State (in MUs) considered for supply side evaluation	
Table 67: Electricity demand from Open Access, Captive and Railways	
Table 68: Expected consumer demand to be met by rooftop solar	
Table 69: Net addressable electricity demand at consumer end to be met by Distribution utilities	
Table 70: Net addressable electricity demand at state boundary to be procured by Distribution utilities	
Table 71: Expected capacities to be retired by 2022 and 2027	
Table 72: Summary of projections - generation sources Table 72: Delegation of the lange of the l	
Table 73: Balance electricity demand to be met by coal based sources	
Table 74: Coal capacities required to meet net addressable electricity demand	
Table 75: Peaking availability of the generating units	
Table 76: PLFs of generation sources considered to meet peak demand	
Table 77: Quantum of peak demand met by various generation sources other than coal	
Table 78: Ramp up/ down requirement of Rajasthan as of FY22	
Table 79: Announced, Contracted and Under Construction Storage Capacity by Technology Type	
Table 80: Alwar - Forecast of electricity consumption using trend method	
Table 81: Alwar - Forecast of electricity consumption using HW method	
Table 82: Alwar - Forecast of electricity consumption using econometric method	
Table 83: Bharatpur and Dholpur - Forecast of electricity consumption using trend method	
Table 84: Bharatpur and Dholpur - Forecast of electricity consumption using HW method	
Table 85: Bharatpur and Karauli - Forecast of electricity consumption using econometric method	
Table 86: Dausa and Karuali - Forecast of electricity consumption using trend method	
Table 87: Dausa and Karauli - Forecast of electricity consumption using HW method	176
Table 88: Dausa and Karauli - Forecast of electricity consumption using econometric method	177
Table 89: JCC - Forecast of electricity consumption using trend method	
Table 90: JCC - Forecast of electricity consumption using HW method	
Table 91: JCC - Forecast of electricity consumption using econometric method	
Table 92: JPDC - Forecast of electricity consumption using trend method	
Table 93: JPDC - Forecast of electricity consumption using HW method	182
Table 94: JPDC - Forecast of electricity consumption using econometric method	183
Table 95: Jhalawar and Baran - Forecast of electricity consumption using trend method	184
Table 96: Jhalawqr and Baran - Forecast of electricity consumption using HW method	185
Table 97: Jhalawar and Baran - Forecast of electricity consumption using econometric method	
Table 98: Kota and Bundi - Forecast of electricity consumption using trend method	187
Table 99: Kota and Bundi - Forecast of electricity consumption using HW method	188
Table 100: Kota and Bundi - Forecast of electricity consumption using econometric method	189
Table 101: Sawai Madhopur and Tonk - Forecast of electricity consumption using trend method	
Table 102: Sawai Madhopur and Tonk - Forecast of electricity consumption using HW method	
Table 103: Sawai Madhopur and Tonk - Forecast of electricity consumption using econometric method	
Table 104: Ajmer - Forecast of electricity consumption using trend method	
Table 105: Ajmer - Forecast of electricity consumption using HW method	
Table 106: Ajmer - Forecast of electricity consumption using econometric method	
Table 107: Bhilwara - Forecast of electricity consumption using trend method	
Table 108: Bhilwara - Forecast of electricity consumption using HW method	
Table 109: Bhilwara - Forecast of electricity consumption using econometric method	
Table 110: Nagaur - Forecast of electricity consumption using trend method	
Table 111: Nagaur - Forecast of electricity consumption using HW method	
Table 112: Nagaur - Forecast of electricity consumption using econometric method	
Table 113: Udaipur - Forecast of electricity consumption using trend method	
Table 114: Udaipur - Forecast of electricity consumption using HW method	
Table 115: Udaipur - Forecast of electricity consumption using econometric method	
Table 116: Rajsamand - Forecast of electricity consumption using trend method	
Table 117: Rajsamand - Forecast of electricity consumption using HW method	
Table 118: Rajsamand - Forecast of electricity consumption using econometric method	
,	

Table 121: Chitorgarh and Pratapgarh - Forecast of electricity consumption using econometric method210 Table 122: Banswara and Dungarpur - Forecast of electricity consumption using trend method......211 Table 124: Banswara and Dungarpur - Forecast of electricity consumption using econometric method213

 Table 137: Jalore - Forecast of electricity consumption using trend method
 226

 Table 144: Barmer and Jaisalmer - Forecast of electricity consumption using HW method......233

Abbreviations

Abbreviation	Full form
BNEF	Bloomberg New Energy Finance
CAGR	Compounded Annual Growth Rate
CEA	Central Electricity Authority
DISCOM	Distribution company/utility
DSM	Demand side management
EE	Energy Efficiency
EV	Electric Vehicle
EVSE	Electric Vehicle Supply equipment
FAME	Faster Adoption and Manufacturing of (Hybrid) and Electric Vehicles
GDP	Gross Domestic Product
GSDP	Gross State Domestic Product
Gol	Government of India
GW	Gigawatt
HW	Holt-Winters
kWh	Kilo Watt hour
IESS	India energy security scenarios
IRENA	International Renewable Energy Agency
MoP	Ministry of Power
MNRE	Ministry of New and Renewable Energy
MTce	Metric Tons of coal equivalent
MU	Million Units
MW	Mega Watt
NEP	National Energy Policy
NITI	National Institution for Transforming India
PEUM	Partial end use methodology
PFA	Power For All
PSU	Public Sector Undertaking
RE	Renewable energy
RPO	Renewable energy obligation
SEC	Specific energy consumption
WEC	World Energy Council

1. Executive Summary

Over the last half a decade, the Indian power sector has witnessed success stories and has undergone dynamic changes. However, the road ahead is entailed with innumerable challenges that result from the gaps between what is planned and what the sector has been able to deliver. Demand forecasting of power, thus, has an important role to play in effective planning and in minimizing the gaps.

The subject of forecasting has been in existence for decades. It involves prediction of future power demand over different planning horizon. It is an essential tool for planning of generation capacities and commensurate transmission and distribution systems, which will be required to meet the future electricity requirement. Reliable planning of capacity addition for future is largely dependent on accurate assessment of future electricity demand. Electricity demand forecasting is an essential exercise for every utility as it forms the basis for the development and optimization of power portfolio across various term time horizons.

The methods adopted for electricity demand forecasting have also evolved over time. Previously, extrapolation of past trends used to be the primary method. However, with the growing impact of macro and micro economic factors, emergence of alternative technologies (in supply and enduse), demographic and lifestyle changes etc., it has become

Need of electricity demand forecasting

The draft amendments to Tariff Policy released in May 2018 mandates that the Commission should direct Distribution licensees to undertake demand forecasting every year and submit short, medium and long-term power procurement plans.

The forecasts will help drive better decisions on investment, construction and conservation. It will also play a role in the process of regulation, tariff setting and lead to optimized use of resources.

imperative to use modeling techniques which capture the effect of factors such as price, income, population, technology and other economic, demographic, policy and technological variables. The future will demand the use of more hybridized and probabilistic approaches to forecast the electricity requirement more accurately.

In India, the Electric Power Survey (EPS) carried out by Central Electricity Authority (CEA) is the primary forecasting study based on which all-planning activities in the power sector are carried out. CEA undertakes the study periodically based on historical data using established methodologies. The forecast results are developed for distribution utilities, state, region and at a national level for short, medium and long-term horizons. One of the observed gap in the results of 18th EPS, released in December 2011, has been the YoY variation between forecast and actual electricity requirement. For the period from FY 2011-12 to FY 2015-16, the actual energy demand was lower by up to 11.39% and the peak demand was lower by upto 16.60%. On average, the demand has been lower by 5% on YoY basis. This has left the country with supply overhang with a large newly added capacity distressed with no PPAs.

CEA in 19th EPS, released in January 2017, has also highlighted the difference and scaled down the energy forecasts for 19th EPS by around 14.35% in FY 2016-17, 17.79% for FY 2020-21 and by 24.45% for the year FY 2026-27. The variation between what is projected and actuals may be dependent on various factors like methodology adopted, forecasting technique used, data reliability, usage of growth and other input factors etc.

Besides use of appropriate methodology and tool, accuracy of demand forecast will also depend on choosing the correct baseline data, which takes into account the unserved demand and the latent demand. Therefore, it is important to look at alternate methodologies that can minimize such variations.

During the draft stage of the National Electricity Plan (NEP), the World Energy Council India (WEC India) had provided several suggestions. One of the major suggestions was to undertake baseline correction of historical data before undertaking a forecast. In addition to that, a need was also felt to review the existing demand

assessment methodologies in order to identify gaps and to develop an alternate methodology. The present study aims to propose an alternate methodology for electricity demand assessment and forecasting.

1.1. Objective and scope of the study

Objective of the study:

- 1. Review and identify gaps in the existing electricity demand forecasting methodologies;
- 2. Develop an alternate bottom up methodology for undertaking electricity demand forecast;
- 3. Undertake baseline correction of historical data and forecast for a selected state;
- 4. Validation of forecast results by comparing with results from existing methodologies;
- 5. Suggest strategies and implementation plan on supply side to meet the forecasted demand.

The following chapters cover in details the scope and each of the objectives.

2. Review of forecasting methodologies of major sectors in India

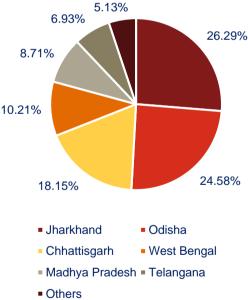
2.1. Coal

2.1.1. Introduction

India is the third largest coal producer in the world after China and the USA. The total coal production in India was around 612 million tons (MT) in FY 2015, which increased to 626 MT in FY 2016. Ninety per cent (90%) of the domestic production comes from public sector coal producers with only ten percent (10%) being produced by the private sector. India imported a total of 212 MT of coal in FY 2015 and 193 MT in FY 2016, which is equivalent to ~ 30% of the domestic coal requirement in the country based on tonnage.

The total coal demand in the country was expected to be around 1.2–1.5 billion tons (BT) by 2020 as per various estimates by the government and independent agencies. Considering this, the Ministry of Coal (MoC) had earlier set up a target of more than doubling the coal production in the country to reach a production level of 1.5 BT by FY 2020. The government aimed to increase coal production of Coal India Limited (CIL) to a level of 1 BT by FY 2020, while the balance production was to be met by the private, state and central sector PSUs. However, due to weak demand from thermal power plants and with a net surplus power situation in the country, the Government, in the current FY 2017-18, reduced the production target of CIL from 660 MT to 600 MT. With the policy push for more renewables, the projections in the shorter term are expected to be affected.

Indian coal sector faces a mismatch between the location of coal reserves and mines. While the reserves are concentrated in eastern and central India, the highdemand centers are in the northwest, west and south. Only around 14% of installed capacity is located in the eastern region where coal production is concentrated. The states with high coal availability which account for 95% of coal reserves are


- Jharkhand
- Odisha
- Chhattisgarh
- West Bengal,
- Madhya Pradesh
- Telangana

Since the high-demand centers are not in close vicinity of coal reserves, a tons of coal has to travel on average

by road, thereby increasing the overall costs.

 Others more than 500 km before it is converted to electricity, straining the country's rail network and leading to transit losses. Also, for a number of thermal power stations in India, coal transportation requires last mile connectivity

Figure 1: Estimate reserves of coal as on March 2017. Total 308.8 BT

2.1.2. Demand projection of Coal

Coal contributes over half of India's primary commercial energy. Though the share of renewable energy is gradually expected to increase in the coming years, coal is likely to remain as India's most important source of energy mainly due to country's large thermal power capacity and coal's negligible price volatility.

Methodology and demand projection of coal done by various bodies is presented below:

2.1.2.1. Draft National Electricity Plan 2016: CEA

The projections provided in the draft National Electricity Plan (NEP), released in December 2016, are based on the draft 19th EPS. The methodology and projections given here are as per the draft NEP 2016. Upon finalization, the methodology and projections might be modified in the future.

2.1.2.1.1. Methodology

CEA carried out the assessment based on the power requirement of States/UTs considering the past growth rates and the increase in electrical energy requirement on account of Power for All, Make in India initiatives, reduction in demand on account of DSM and various efficiency improvement measures being under taken by the Government. The total electricity requirement on All India basis was worked out accordingly.

For the year 2016-17, coal based generation programme of 921 BU was estimated in consultation with the power utilities (estimated growth of 6.9%). The total coal requirement of 600 MT for the power plants has been estimated considering normal monsoon year during the year 2016-17.

With the provisional demand projections and likely Renewable Energy Sources (RES) capacity addition, the coal based generation has been estimated and accordingly provisional coal requirement has been worked out.

The assumptions considered are given as follows:

The likely capacity addition of RES has been considered in three cases viz.,

Table	1: Likely capacity addition of	of RES
Case I	Case II	Case III
115,326 MW	90,326 MW	65,326 MW by the terminal year 2021-22

- With the above estimate, the total capacity of RES will be 175 GW in Case-I, 150 GW in Case-II and 125 GW in Case-III respectively by 2021-22
- Coal requirement for the year 2021-22 have been worked out considering 30% reduction in Hydro generation due to failure of monsoon and being supplemented by coal based generation
- During 2026-27, the total capacity of RES has been estimated to be 275 GW capacity, considering 175 GW of total capacity at the end of the year 2021-22 and 100 GW capacity addition of RES during FY2022-27.
- Adequate coal is expected to be available for the coal based power plants during 2021-22 and 2026-27

2.1.2.1.2. Projections

Given the above methodology and assumptions, the coal requirement in the year 2021-22 and 2026-27 have been estimated by CEA as follows:

Particulars		2021-2022				
Renewable Scenarios	RES: 175 GW	RES: 275 GW				
Total coal based generation (BU)	1074.4	1127.4	1177.5	1331.5		
Total coal Requirement (MT)	727	763	797	901		
Imports by plants designed on imported coal (MT)	50	50	50	50		
Domestic Coal Requirement (MT)	677	713	747	851		

With CIL production target of one BT by 2019-20, it is expected that there would be no shortage in the availability of coal for the power plants during 2021-22 and 2026-27. In addition, coal production from the captive coal blocks allotted to power utilities would also supplement the availability of domestic coal.

The estimated coal requirement developed by CEA as provided above is more of a top down approach. The aggregation of coal demand by considering individual sectors in which coal is being used is not available for the present projections. Historically, from the period FY06 to FY16, 64-68% of the total raw coal is used by power utilities and 6-10% of the total raw coal by captive power producers. Assuming similar scenario continues for the next decade also, coal will be required to meet the major power requirements of the country.

2.1.2.2. NITI Aayog

NITI Aayog's model consists of two projections viz.

- Projections from Demand side: Coal demand based on input demand from Power plants and Industries
- Projections from Supply side: Coal demand to be met by domestic production and imports

2.1.2.2.1. Demand side Projections

The assumption considered is that coal demand is based on aggregate of (i) input coal demand from coal power stations and (ii) Industries.

(i) Methodology for input based demand projections

The general assumptions while deriving various scenarios/levels are as follows:

- The capacities mentioned include utility and captive power plants fired by coal or lignite, though a lower PLF is assumed for as utilization will be less
- Captive power plants do not use efficient technologies as they are mostly small sized while newer technologies (e.g. supercritical technology) need larger capacities
- The energy generation and coal requirement computed for different capacity addition trajectories also depend on efficiencies of coal-fired thermal power plants

NITI Aayog's model has four scenarios:

Level 1: Least effort scenario

 Coal based power generation is discouraged due to increasing fuel prices, import dependence, pressure to reduce carbon emissions, reducing prices of renewable energy etc.

¹ Draft National Electricity Plan December 2016

Alternate methodology for Electricity demand assessment and forecasting

PLF of power plants remains 73% up to 2032 and improves to 74% in 2047

Level 2: Determined effort scenario

- Installed capacity will grow rapidly to 297 GW in 2027, and then grow slowly to 333 GW in 2047 due to increasing coal prices, increasing import dependence and increasing pressures to reduce emissions.
- PLF is assumed to improve to 75% for next two decades and to 76% by 2047

Level 3: Aggressive effort scenario

- Level 3 assumes a coal-fired capacity addition slightly lower than 8% GDP growth scenario. The growth rate of capacity addition is assumed to reduce subsequently.
- Current PLF will improve to 77% for next two decades and to 78% in 2047

Level 4: Heroic effort scenario

- It assumes a coal-fired capacity addition slightly lower than 9% GDP growth scenario.
- The growth rate of capacity addition is assumed to reduce subsequently.
- Installed capacity will grow to 591 GW in the next 35 years i.e. by 2047 due to improved domestic coal supply, softening of imported coal prices and availability of more carbon space to countries like India.
- Current PLF will improve to 79% for next two decades and to 80% in 2047

Projections on Coal requirement from Power Stations

As per the methodology adopted and defined scenarios, the demand projection of coal from coal based power station based on different levels is shown in the table below

Table 3: Coal requirement by Coal Power Stations (MTce)								
Scenario	2012	2017	2022	2027	2032	2037	2042	2047
Level 1	464	640	776	849	888	883	855	822
Level 2	464	668	863	989	1032	1067	1070	1059
Level 3	464	687	911	1091	1239	1373	1440	1446
Level 4	464	744	1039	1304	1522	1699	1796	1855

(ii) Methodology for assessing aggregated demand projections from Industries

Seven major energy consuming industry sub-sectors have been analyzed to estimate the energy use in each sub-sector to understand the aggregated demand of coal from industry under different trajectories.

The general assumption considered is that over the years, the energy intensity of the industry sector has been reducing as several of the units across sectors have moved to processes that are more efficient. The improvement in Energy Efficiency (EE) has been considered as a major driver for reduction in the Specific Energy Consumption (SEC) of industry.

The brief about the four scenarios considered as given in the following

Level 1: Least effort scenario

- This trajectory assumes that there will be no new major government policies for EE. The autonomous EE penetration levels are also low
- The efficiency of the units undergoes marginal reduction/revision by end of the terminal year (2047)
- The efficiency of some sub-sector units improves at 5-15% of the efficiency improvement for the units that opt for EE
- The "Others" undergo reduction in energy intensity by a CAGR of ~4%

Level 2: Determined effort scenario

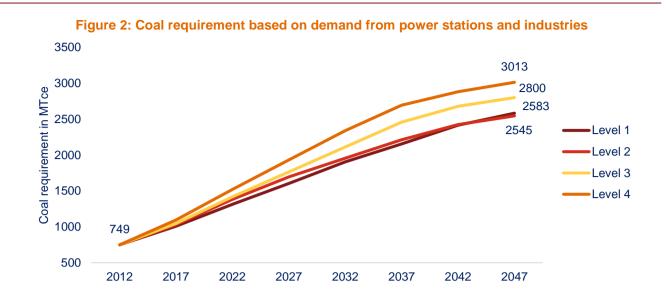
- This level includes a gradual enhancement of penetration of EE in Industry
- Industrial units opting for EE would achieve the best efficiency possible in every sub sector
- The units not opting for EE also improve their efficiency, but by a much lesser degree
- The "Others" undergo a reduction in intensity of about 4-5% CAGR

Level 3: Aggressive effort scenario

- Building on Level 2, this scenario further increases the EE penetration
- The units not opting for EE increase their efficiency across processes at a rate of 20-30% of the efficiency improvement by units that opt for EE.
- The "Others" undergo an efficiency improvement of about 4-5% CAGR

Level 4: Heroic effort scenario

- Indicates the maximum possible improvement that can be achieved in the sector
- This level further increases EE penetration
- In addition, this level assumes that the units not taking up EE undergo an efficiency increase of between 20-50% of the units that opt for EE
- The "Others" improve their intensity by about 5-6% CAGR


Projections on Coal requirement from Industries

As per the methodology adopted and defined scenarios, the projection for coal in order to meet the demand from industries shown in the table below

Table 4: Coal requirement by Industries (MTce)								
Scenario	2012	2017	2022	2027	2032	2037	2042	2047
Level 1	285	368	538	754	1017	1272	1561	1761
Level 2	285	363	520	705	925	1145	1354	1486
Level 3	285	358	507	674	874	1084	1239	1354
Level 4	285	351	481	628	817	996	1085	1158

Total demand projections of Coal

The total coal demand based on demand from power station and industries is summarized in the graph below. The graph captures the variation in the coal demand based on the four scenario, which were defined.

2.1.2.2.2. Supply side Projections

NITI Aayog has forecasted coal production till 2047 considering four different scenarios from the supply side. The assumptions are based on domestic supply potential and the balance to be met from imports.

Methodology

The assumptions while deriving these scenarios/levels are as follows:

- Coal is intended to mean both coal as well as lignite.
- The average life of a mine is 30 years.
- The current mine ability (ratio of India's techno-economically extractable reserves to prove reserves) of Indian mines is 34.6%.
- Maximum coal reserves percentage to be mined by underground coal mining is limited to 12.3% of total proved reserves.
- This is based on assumption that coal reserves up to 300 m will be mined by opencast (OC) method, half of reserves between 300 – 600 m depth would be mined by opencast and underground (UG) method each, and reserves deeper than 600 m will be mined by underground mining.
- Collieries own coal consumption= 0.08% of their coal production.
- Remaining coal production will be considered as net coal production.

The following provides a brief about the assumptions considered under the four scenarios:

Level 1: Least effort scenario

- Level 1 assumes that only the currently operating, on-going and planned coal mining projects by CIL (437 million tons per annum (MTPA)) and SCCL (41 MTPA) and currently allocated captive blocks (43 billion ton geological reserves) will come online.
- Production from current (non-captive) mines will reduce by 17% every 5 years (consistent with mine life of 30 years) due to closure of mines.
- Production from captive blocks will start reducing from 2027 onwards as most of the currently producing captive blocks are new. Coal reserves and mine ability of all reserves will remain at present values.

- In this scenario, coal production gradually increases from 582 MTPA in 2011-12 to peak of 866 MTPA in 2037 and then it will start declining and reach 540 MTPA in 2047.
- About 85% of the mineable coal reserves will have been extracted by 2047 in this scenario as no new reserves are added and there is no improvement in mine ability.
- In addition, only OC mining, which is easier and cheaper, will be encouraged whereas the UG mining will be discouraged. So, the UG % will reduce from current of about 9% to 6.4% in 2047

Level 2: Determined effort scenario

- Level 2 projections are consistent with realistic (business as usual) projected scenario based the 12th Five Year Plan until 2022.
- Given that the production for 2012-13 fell about 18 million tons short of the target of 575 million tons, it assume that the total shortfall from the target in 2017 would be 50 million tons. This results in an annual production increase of about 5% per annum up to 2017, and about 4% up to 2022.
- Proved coal reserves will grow at a reduced pace of 1% p.a. as most of the prognosticated coal bearing area (75%) has been explored. There would be some improvement in mine ability due to technological improvement.
- In this scenario, coal production will grow to a peak at 1191 MTPA in 2037 and decline marginally by 2047 to 1157 MTPA.
- About 62% of mineable coal reserves would have been extracted by 2047. OC mining will be encouraged but UG mining will not be paid much attention. Therefore, UG mining's percentage will increase just slightly from current 9% to 9.3% in 2047.

Level 3: Aggressive effort scenario

- Level 3 is consistent with the optimistic scenario projections until 2022 in the 12th Five Year Plan, tempered by slower-than-expected increase in production. The rate of increase of production reduces slightly going forward.
- Proved coal reserves will grow at about 1.3% p.a. and there would be further improvement in mine ability.
 With these positive conditions for coal based energy supply, coal production will be 1400 MTPA in 2047.
- About 55% of mineable coal reserves would have been extracted by 2047. UG mining will also be encouraged progressively to tap deeper coal reserves and its share will increase to 10.7% in 2047.

Level 4: Heroic effort scenario

- Level 4 is the most optimistic, assuming full encouragement for coal based energy supply.
- Proved coal reserves will grow at 1.5% p.a., production will reach about 1400 MTPA in 2032 as anticipated in the Integrated Energy Policy document, and mine ability will increase better than in other levels. In this scenario, coal production will increase to about 1608 MTPA in 2047, almost consistent with the high-case scenario of global coal production as per Global Coal Production Outlook.
- In this scenario, about 48% of mineable coal reserves would have been extracted by 2047. UG mining
 will be emphasized significantly along with technological advancements but its share will remain confined
 to 12.3% in 2047 due to geological constraints.

Projections

		Table	e 5: Coal pro	oduction pr	ojections (N	/IT)		
Scenario	2012	2017	2022	2027	2032	2037	2042	2047
Level 1	578	692	766	799	793	779	672	540
Level 2	578	719	893	1034	1128	1169	1175	1157
Level 3	578	766	1014	1169	1283	1350	1377	1400
Level 4	578	786	1048	1236	1384	1498	1551	1608

The table below shows the coal production up to the year 2047 as per the four scenarios which were developed

Coal Imports

Total import requirements for coal would also depend on how demand from other sectors such as iron and steel and cement changes over time.

75% of domestically produced coal continues to be used for power generation as currently done, coal import requirements from the power sector in 2047 range between 260 MTPA (if coal production and coal-based capacity addition follow a determined path) and 660 MTPA (if coal production and coal-based capacity addition follow a heroic path) even if a heroic effort scenario of technology adoption requiring least coal plays out.

	Tabl	e 6: Project	ions for Co	al Imports a	as per the s	cenarios (M	T)	
Scenario	2012	2017	2022	2027	2032	2037	2042	2047
Level 1	124	261	450	828	1417	2094	2943	3716
Level 2	124	204	296	384	666	1117	1544	1938
Level 3	124	165	270	411	561	787	943	1023
Level 4	124	207	400	588	752	927	1058	1118

Supply side total projections

Total supply side demand projection based on summation of coal production and import is presented below:

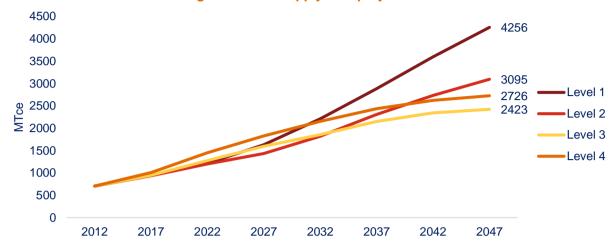


Figure 3: Total supply side projections

Coal has always been the primary source of energy for the country and as per estimates the share of coal in India's primary energy supply was between 45-50% and is expected to have significant share in the years to come.

Since the major requirement of coal will be from power plants and currently the thermal plants running at a lower PLF of ~ 57% as on June 2017 at an all India level. With demand for electrcity set to increase, the requirements will have to be met from coal only. Even though no new coal based plants may be approved for the next ten years, but post 2027, there is likelihood of capacity addition which is likely to translate into a coal demand of 1.1-1.4 billion tonnes. With the domestic production scenario projected to plateau out for level 2 and level 3 scenarios post 2030, the additions post 2027 will require some amount of import dependence for the country.

2.1.3. Summary

- The coal projections given in the section above are based on methodologies developed by CEA and NITI Aayog.
- The projections developed by CEA in the Draft NEP up to FY 2026-27 are predominantly 'Top Down' projections and have been worked out based on an historical growth rate and considering possible scenarios of renewable capacity addition. The aggregation of the demand from individual demand sectors has not been projected.
- The projections developed by NITI Aayog are from the coal demand and supply side up to the year 2047. The projections have been developed considering four scenarios.
 - For the demand side projections, the total aggregated demand has been worked out by considering the demand from Power sector and from eight major Industrial sector wherein coal is required.
 - The supply side projections has been worked out by estimating the coal production from the domestic sector and the balance to be met from imports.
- Historically, between 60%-70% of the raw coal is being consumed by the power sector and the balance is the demand from the Industrial sector. Going ahead, the share is expected to come down Y0Y but will remain as the major power source in the next two decades.

2.2. Renewable Energy

2.2.1. Introduction

Demand for renewable sources of energy has witnessed growth in the recent past. Some of the factors, which supported the penetration of the renewables, are policy focus, reducing costs of the sector and environmental considerations.

The following figure highlights the growing share of renewables in the generation capacity in the country.

- In a period of five years, the total installed renewable capacity of renewables has more than doubled from 24.5 GW in March 2013 to about 70.6 GW in July 2018.
- While the percentage contribution from thermal has remained constant, the shift has majorly been due to decrease in capacity additions from the Hydro sector.

The renewable energy sector is traditionally led by the wind power sector followed by solar. However, over the recent period, the trend has shifted towards solar with solar capacities leaping from ~5 GW to 17 GW in a period of 1-2 years due to policy and reform push from the government and with falling prices of the solar panels. Wind on the other hand has maintained more of a steady growth over the years though the installation has picked up in the period from FY 16 to FY 17.

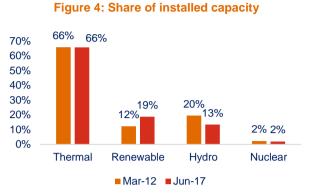
Conducive policy and regulatory framework at the Central as well as State Government level is further aiding in driving demand for renewable energy in the country. Renewable Purchase Obligations (RPO) have been mandated upon the Obligated Entities in line with the aggressive capacity addition targets of the Government of India.

2.2.2. Renewable Energy Potential

India has an estimated renewable energy potential of about 900 GW from commercially exploitable sources viz. Wind – 102 GW (at 80 meter mast height); Small Hydro – 20 GW; Bioenergy – 25 GW; and 750 GW solar power, assuming 3% wasteland is made available. The potential of major renewable energy sources is given in the following section

2.2.2.1. Solar

As per National Institute of Solar Energy (NISE) total solar energy potential in India is about 748.98 GW with maximum potential in Rajasthan region 142.31GWp.



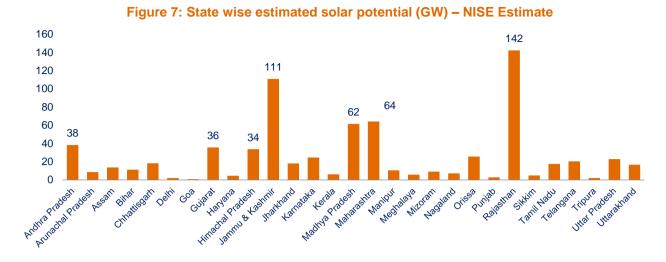


Figure 5: Installed capacity - Wind

25000 -

Rajasthan (25%), Gujarat (21%) and Madhya Pradesh (14%) are leading in solar installed capacities contributing to 60% of total installed capacity.

The National Tariff Policy 2016 specifies, "SERC shall reserve a minimum % for purchase of solar energy ...such that it reaches 8% of total consumption of energy by March 2022". Considering the policy directives, the Government had notified state wise RPO obligations to be fulfilled by the states.

2.2.2.2. Wind

Wind power constitutes ~9.8 percentage of total power installed capacity and is ~55.8 percentage of the total Renewable Energy (RE) Capacity generated in the country as on June 2017. The National Institute of Wind Energy (NIWE) has developed the Wind Atlas of India. NIWE also collects data from Solar Radiation Resource Assessment stations to assess and quantify solar radiation availability and develop Solar Atlas of the country. As per NIWE estimate, wind energy potential in India is about ~100 GW at 80m level and ~300 GW at 100m level.

2.2.2.3. Biomass

The current availability of biomass in India is estimated at about 500 million metric tonnes per year. The studies carried out by the Ministry of New and Renewable Energy show a potential of 18000 MW, which includes the biomass availability at about 120-150 million metric tonnes per annum covering agricultural and forestry residues. This apart, about 7000 MW additional power could be generated through bagassebased cogeneration. A total of approximately 500 biomass power and cogeneration projects aggregating to 4760 MW capacity have been

Figure 8: State wise estimated wind power potential (GW) – NIWE estimate at 80m level

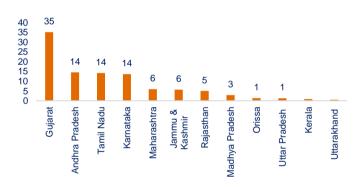
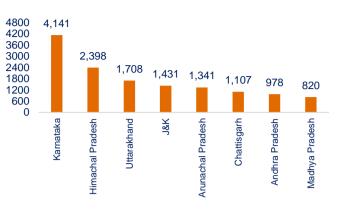


Figure 9: State wise estimated biomass potential (MW)



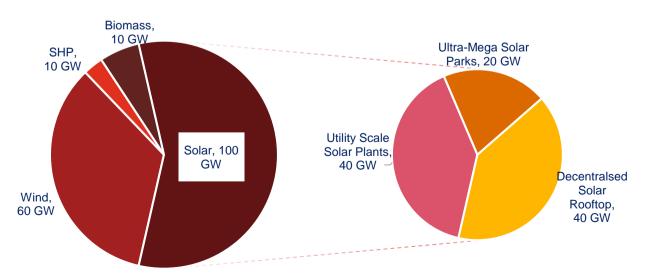
installed in the country for feeding power to the grid. In addition, around 30 biomass power projects aggregating to about 350 MW are under various stages of implementation.

2.2.2.4. Small hydro power

In India, hydro projects up to 25 MW station capacities have been categorized as Small Hydro Power (SHP) projects. The estimated potential for power generation in the country from such plants is about 20,000 MW. Ministry of New and Renewable Energy has created a database of potential sites of small hydro and 6,474 potential sites with an aggregate capacity of 19,749.44 MW for projects up to 25 MW capacity have been identified. The installed capacity as on June 2017 is 4379.86 MW.

Figure 10: State wise estimated SHP potential (MW)

2.2.2.5. Waste to Energy


The total estimated potential of Waste to Energy in the country is about 2556 MW of which 1022 MW is estimated to be industrial wastes. The states with higher potential of waste to energy are Maharashtra (287 MW), Uttar Pradesh (176 MW), Tamil Nadu (151 MW), West Bengal (148 MW), Delhi (131 MW) and Andhra Pradesh (123MW). Rest of the potential is spread out across the states in India.

2.2.3. Projections for renewables

The Ministry of New and Renewable Energy (MNRE) is the nodal Ministry for all matters relating to new and renewable energy. The Ministry has been facilitating the implementation of broad spectrum programs including harnessing renewable power, renewable energy to rural areas for lighting, cooking and motive power, use of renewable energy in urban, industrial and commercial applications and development of alternate fuels and applications.

The Government of India, in 2015, while reviewing the potential of the renewable sector, realized the importance of the contribution that renewables can make in the country to meet the growing energy needs. Considering the future demand, the government revised the targets for the renewable energy and set an ambitious target of achieving 175 GW of renewable energy capacity in the country by year 2022. Though there is no definite methodology behind the fixation of the target, it was more a target set to utilize the potential, which has to be backed up by policy, and reforms push from the Government.

The source wise breakup of RE targets is indicated in the following figure:

Figure 11: Renewable Energy targets for 2022 (GW)

The 175 GW target was further noted as part of India's Intended Nationally Determined Contributions (INDC) submission to the United Nations Framework Convention on Climate Change (UNFCCC), though not as part of the official pledge, but as part of the various mitigation strategies.

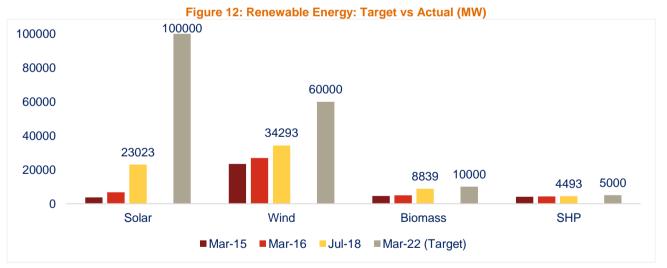
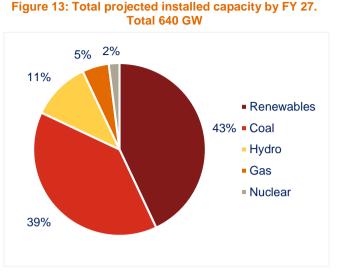

As per the provisions laid out in the National Tariff Policy, 2016 and in order to achieve the target of 175 GW renewable capacity by 2022, the MoP in consultation with MNRE has notified the long term growth trajectory of RPOs for Non-Solar as well as Solar as under:

	Table 7: RPO Trajectory de	efined by the Government	
Trajectory	2016-17	2017-18	2018-19
Non-solar	8.75%	9.50%	10.25%
Solar	2.75%	4.75%	6.75%
Total	11.50%	14.25%	17.00%

2.2.4. RE Actual Implementation vs. Targets

Of 175 GW, the primary resource is solar and is slated to contribute 100 GW of the total. Most of large MW scale utility projects are expected to come up in solar parks. These parks will have appropriately developed land with all clearances, a transmission system, water access, road connectivity, communication network, etc. The Solar Energy Corporation of India (SECI) is developing these solar parks in collaboration with the respective state governments. The choice of implementation agency is left to the state governments. It could be done by a) the designated state PSU, b) a joint venture between SECI and the state PSU, c) SECI, d) private entrepreneurs. The implementation agency may sell or lease land plots to prospective developers.

Even though the solar sector has picked up in the last three years, there is a long way to go to meet the targets.


in mough the solar sector has picked up in the last three years, there is a long way to go to meet th

The government has set year on year targets to be achieved, but there was considerable delays. In addition, there are concerns on various fronts that also has led to holding back on many fronts. Lenders and investors find it risky to invest in renewable energy because of the nature of uncertainty in generation. There are concerns regarding regulatory issues related to land acquisition and government clearances for project. Concerns regarding purchase of power by state distribution companies, backing down of renewables by distribution companies, non-payment of dues on time are also few of the concerns which the players are grappling with. The next few years up to 2022 will be crucial for the sector and will eventually decide the future.

2.2.5. Targets beyond 2022 for Renewables

The draft National Electricity Plan 2016 provides the projections for Renewable capacity to be added beyond the year 2022. CEA carried out a simulation by considering energy scenarios and projected an addition of 100 GW renewable capacity in the period from 2022 to 2027 taking the total renewable installed capacity to 275 GW.

CEA estimates that in a period of next ten years, the required installed capacity will double from the current of ~ 330 GW to about ~640 GW by end of 2026-27. The projections were carried out based on the total demand that has been projected up to FY 2026-27. Hydro, Gas and Nuclear based capacity were given the priority due to their inherent advantages to move towards a Low Carbon Growth.

Renewable capacity was considered as a must run capacity in the system. The balance requirement has been allotted to coal.

2.2.6. Summary

- The projections for renewable energy are more of a top down policy decision and not from a bottom up approach from the individual sectors. The targets have been set considering the potential that the sector has in the country.
- In the period of last five years, the total installed renewable capacity of renewables has more than doubled from 24.5 GW in March 2013 to about 58.3 GW in June 2017, however the growth in the individual sectors have been varied.
- With the evolving policy push and growing interest of the stakeholders, the renewable capacity addition is expected to grow but it is still early to estimate whether the target of 175 GW will be met or not.
- The current projections of other sectors like coal etc. have also been developed considering possible scenarios of renewable capacity additions by the year 2022.
- CEA in the draft NEP has developed a possible scenario beyond the year 2022, wherein it is assumed that by the year 2022, the target of 175 GW will be met and by 2027, the renewable capacity addition will be 275 GW, which will constitute 43% of the projected capacity addition from the current share of ~17%.

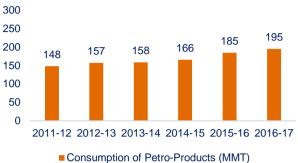
2.3. Oil & Natural Gas

2.3.1. Introduction

India is a net importer of Oil & Gas and imports ~ 80% of its Oil requirements. The sector primarily fuels the important sectors of transport and industries like fertilizers, power etc.

From global shares of oil and gas of 33% and 24% in energy consumption in 2015 respectively, the IEA estimates the respective shares of oil and gas to converge at 25% each by 2035. In India, the shares of oil and gas in energy consumption in 2015-16 were 26% and 6.5%, respectively. ²

It is expected that in the medium term while the share of oil may not come down, share of gas would rise. India traditionally lagged in the exploration of the oil and gas sector and was more reliant on imports. With increasing population and economic growth, the demand for Oil & Gas has been growing consistently. However, the same has not been backed up with sufficient exploration and production.


As per the Draft Energy Policy 2017 released by NITI Aayog, from 2005-06 to 2015-16, oil production increased by 15% while consumption of petroleum products increased by 62% and, gas production remained static, though there was an upswing in gas consumption between 2009-12 due to gas supplies from KG D6 after which the production has been constantly declining, whereas the consumption of gas increased by 38%.

Adjoining figure³ highlights the increasing trend of natural gas imports to meet the growing demand. The reliance on imports has exposed India to external price volatility and risks the energy security of the country.

The variation in the global oil prices pose challenges for


the Indian economy and its growth. The concern over crude oil prices stems from India's energy import bill of around \$150 billion, expected to reach \$300 billion by 2030. However, the decline in the oil prices had a positive impact on the economy. India is targeting to reduce its imports by 10% by 2022 and plans to meet three forth of its demand domestically by the year 2040.

Figure 14: Consumption of petroleum products

Figure 16: Gas production and import

² Draft Energy Policy 2017

³ Annual Report 2016-17, MoP&G

Alternate methodology for Electricity demand assessment and forecasting

2.3.2. Oil and Gas Potential

The estimated reserves⁴ of crude oil in India as on 31st March 2016 is 621.10 MT against 635.60 MT a year ago. Geographical distribution of Crude oil indicates that the maximum reserves are in the Western Offshore (39.79%) followed by Assam (25.89%), whereas the maximum reserves of Natural Gas are in the Eastern Offshore (36.79%) followed by Western offshore (23.95%). The estimated reserves of Natural Gas in India as on 31st March 2016 stood at 1227.23 Billion Cubic Meters (BCM) as against 1251.90 BCM a year ago.

2.3.3. Oil & Gas Projections

2.3.3.1. Petroleum Planning and Analysis Cell (PPAC)

Petroleum Planning and Analysis Cell (PPAC) is the official source of data and policy analysis on the hydrocarbon sector in the country. It monitors and analyses trends in prices of crude oil, petroleum products and natural gas and their impact on the oil companies and consumers, and prepare appropriate technical inputs for policymaking. It also collects, compiles and disseminates data on the domestic oil and gas sector in a continuous manner and maintain the data bank, prepares periodic reports on various aspects of oil and gas sector.

2.3.3.1.1. Methodology

The demand for petroleum products has been calculated based on the aggregated Net Demand (Production + Import – Export - Consumption) of individual products in the country based on the past trends. Based on the historical data available from V Plan (1974-79) for each of the petroleum products, PPAC computed the Compounded Annual Growth Rate (CAGR) for each Five-year plan and the Annual CAGR for all the petroleum products up to XII Plan (2012-17). Based on the past growth rate, the demand of petroleum products and natural gas for the 13th Plan was worked out.

2.3.3.1.2. Aggregated Projections⁵

Based on the historical CAGR, demand estimates for the FY 2017-18 to FY 2021-22 is given below. The demand projections have been arrived at considering the growth rate of individual sectors and the demand of each product is then aggregated to arrive at the total demand for petroleum products.

Table 8: Demand projections from FY17-22 based on CAGR					
Products	FY 2017-18	FY 2018-19	FY 2019-20	FY 2020-21	FY 2021-22
1. Petroleum Products ('000 MT	.)				
LPG	22597	23271	23868	24342	24770
MS	24527	26587	28774	31095	33651
NAPHTHA	12516	14185	14923	15388	15388
ATF	9263	10022	10829	11673	12517
SKO	6549	6352	6162	5977	5798
HSDO	86762	92050	97859	104101	110785
LDO	400	400	400	400	400
LUBES	3120	3207	3297	3389	3485
FO/LSHS	7845	7845	7845	7845	7845
BITUMEN	6305	6544	6687	6878	7165
PET COKE	11419	12651	14000	15476	17089

⁴ Energy Statistics 2017, MoSPI

⁵ PPAC, MoP&G

Alternate methodology for Electricity demand assessment and forecasting

OTHERS	6142	6071	6103	6085	6067
Total POL	197445	209185	220747	232649	244960
2. Natural Gas (MMSCMD)	494	523	552	586	606

2.3.3.2. Petroleum and Natural Gas Regulatory Board (PNGRB)

The Petroleum and Natural Gas Regulatory Board (PNGRB)⁶ was constituted under The Petroleum and Natural Gas Regulatory Board Act, 2006 to protect the interests of consumers and entities engaged in specified activities relating to petroleum, petroleum products and natural gas and to promote competitive markets and for matters connected therewith or incidental thereto. The board has also been mandated to regulate the refining, processing, storage, transportation, distribution, marketing and sale of petroleum, petroleum products and natural gas excluding production of crude oil and natural gas so as and to ensure uninterrupted and adequate supply of petroleum, petroleum products and natural gas in all parts of the country.

PNGRB authorized the industry group to conduct a study Vision 2030: Natural Gas Infrastructure in India, which was released on May 2013. The current report provides the projections for the Natural gas for the period from FY 2012-13 to FY 2029-30.

2.3.3.2.1. Methodology

Power, fertilizers and other industries consume the bulk of natural gas in India. The basic premise behind the projections carried out in FY 2012-13 was that, for the power sector, there will be shortage of domestic coal and prices of imported coal will increase which will shift the demand towards natural gas. For the fertilizer sector, the assumption was increased food requirement will call for higher fertilizer requirements and natural gas is used in those industries.

The following provide the systematic methodology adopted for carrying out the demand projections:

- The base for the current document are the projections given in the Plan document for the year FY 2012-13 to 2021-22.
- Demand projections were then refined for Power, Fertilizer, CGD and Petrochemical /Refining sectors in order to project the most realistic demand scenario based on inputs from industry players and Gol
- Sectoral demand growth rate beyond 2021-22 assumed (where ever required) based on assumptions used in the 'Plan Document' and industry inputs
- No constraints were applied in terms of natural gas price, supply and infrastructure
- Regional distribution for demand were then projected
- In the final step, the demand projections up to 2030 were consolidated considering all the above factors

2.3.3.2.2. Aggregated demand projections

The demand for individual sectors were worked based on past growth trends and then subsequently aggregated to arrive at the total demand.

Table 9: Segment wise demand projections					
Demand from Sectors (MMSCMD)	FY 2012-13	FY 2016-17	FY 2021-22	FY 2026-27	FY 2029-30
Power	86.50	158.88	238.88	308.88	353.88
Fertilizer	59.86	96.85	107.85	110.05	110.05

⁶ Website of PNGRB

City Gas	15.30	22.32	46.25	67.96	85.61
Industrial	20.00	27.00	37.00	52.06	63.91
Petrochemical/ Refineries	54.00	65.01	81.99	103.41	118.85
Sponge Iron/ Steel	7.00	8.00	10.00	12.19	13.73
TOTAL Demand	242.66	378.06	516.97	654.55	746.03

2.3.3.3. NITI Aayog

The projections provided in this section are based on the report "A Report on Energy Efficiency and Energy Mix in the Indian Energy System (2030) Using India Energy Security Scenarios, 2047" released by NITI Aayog. The numbers provided are based on possible scenarios, which NITI Aayog, in consultation with other stakeholders, feels will be the most likely case. The scenarios have been developed using the tool India Energy Security Scenarios (IESS), 2047.

2.3.3.3.1. Methodology

The IESS, 2047 has been developed with a view that energy scenarios should be carried out together and not in silos as was the practice earlier for each sectors. The IESS considers four possible scenarios or levels, which are given as under

- Level 1: Least effort scenario This assumes that little or no effort is being made in terms of interventions on the demand and the supply side, and represents a pessimistic outlook
- Level 2: Determined effort This describes the level of effort, which is deemed most achievable by the implementation of current policies and programme of the government. It may be seen as the 'current policy' with autonomous improvements
- Level 3: Aggressive Effort This describes the level of effort needing significant change, which is hard but deliverable
- Level 4: Heroic effort This considers extremely aggressive and ambitious changes that push towards the physical and technical limits of what can be achieved

The scenarios developed and provided in the report are considering Level 2 i.e. achievable as per implementation of current policies of the Government.

The IESS, 2047 scenarios are based on certain assumptions relating to likely GDP growth, population, level of economic activity, structure of the economy, urbanization, household occupancy etc. that would impact the demand for energy.

The above analysis was carried out not only by considering the economic behavior in the Demand sectors, but also the technology choices and fuel preference category, leading to significant impact as to how energy or electricity is supplied to meet this demand. The conditions as they obtain in India have been factored in after consulting sector specific players. The effect of energy efficiency has been considered in the demand side factors. From the supply side, domestic resources meet each of the fuel demands first, and the balance is imported. Within electricity, no preference is given to any technology on the supply side and past trends have been used to project deployment of supply side technologies in 2030 and 2047.

2.3.3.3.2. Projections

With the above assumptions, the scenario developed for the three years have been provided wherein the primary energy requirement has been projected as provided in the following table

Primary Energy Supply (TwH)	2012	2022	2030	2047
Coal	3,284	5,792	7,773	13,401
Oil	1,929	3,093	4,429	7,137
Gas	574	1,017	1,325	2,068
Nuclear, Hydro and Renewables	245	629	935	1,968
Others	985	658	826	1,316
Total	7,017	11,189	15,286	25,890

From on the above projections, the share of oil and gas in the Primary Energy Demand has been estimated as below:

Table 11: Share of Oil and Gas				
Share of Oil and Gas (TwH)	2012	2022	2030	2047
Total supply	7,017	11,189	15,286	25,890
Oil	1,929	3,093	4,429	7,137
Gas	574	1,017	1,325	2,068
Percentage share of Oil	27%	28%	29%	28%
Percentage share of Gas	8%	9%	9%	8%

Based on the projections as per the level considered, it is observed that the share of oil and gas in the economy will remain more at a constant level. The share of Oil and Gas is expected to increase proportionately with that of the increase in requirement of primary energy.

2.3.4. Summary

- The demand projections for Oil and Gas are based on methodologies developed by PPAC, P&NGRB and NITI Aayog.
- The projections developed by PPAC are bottom up projections developed based on the historical growth rate of individual petroleum products. The total demand up to FY 2020-21 has been arrived at by aggregating the individual projected demand of the products.
- The projections given in the study conducted by PNGRB are based on the demand for Natural Gas assessed for individual sectors namely Power, Fertilizer, City Gas Distribution and Petrochemical /Refining sectors etc. which are dependent on Natural Gas. The individual demand of the industries is then aggregated to arrive at the total demand of Natural Gas for the period up to FY 2029-30.
- The projections developed by NITI Aayog are considering four probable scenarios, which may work out from the current demand. The projections have been developed for primary energy and for three specific years i.e. 2022, 2030 and 2047. The share of Oil and Gas has been worked out from the primary energy in a top down approach. From the derived projections, it is observed that the share of oil and gas is expected to maintain a constant level.

2.4. Power

2.4.1. Introduction

India is a country with more than 1.3 billion people accounting for almost ~18% of world's population. India faces a formidable challenge in case of providing adequate energy supplies to consumers at a reasonable cost. With anticipated increase in India's nominal GDP, the energy challenge thus is of fundamental importance. In addition, in the last six decades, India's energy use has increased by ~16 times and the installed electricity capacity by around ~85 times. Nevertheless, India as a country has been suffering from energy poverty and pervasive electricity deficits. In recent years, the country's energy consumption has increased at a relatively fast rate due to population growth and economic development and with the economy projected to grow, rapid urbanization and improving standards of living for millions of Indian households, the demand is likely to increase significantly. The supply challenge is also of such magnitude and there are reasonable apprehensions that shortages will be there non-uniformly at various regions of the country even though on an all India level, the situation will be net surplus in the future.

The power sector in India is at a crucial juncture now with several investments being undertaken by the public as well as private sector. There has been an increasing private sector participation in the recent times. It was seen in the 11th plan that 39% of conventional energy capacity addition was from the private sector while 35% from the state utilities and around 26% from central power companies. Private sector also contributed around 59% in the total capacity addition during FY 14-15. The emerging dynamics of Indian power sector market would require industry players to realign their strategies and operating mechanisms to the changing sectoral trends.

Another area to highlight is the increasing share of renewable energy in the demand and supply of power in the country. There has been a shift to renewable power in the recent times as the same constitutes around 19% of the total installed capacity as on January 2018. The higher losses have also been a cause of concern for the power sector and there is a need for efficient management of the infrastructure. The Indian electricity sector has also seen an unprecedented growth in the last decade. The all India installed capacity has nearly doubled in a period of ten years from ~144 GW in 2006 to ~330 GW in 2017⁷. There has also been a steady growth in per capita electricity consumption from 631 kWh in 2006 to 1122 ⁸kWh in the year 2015-16.

Within the last half decade, the Indian power sector has witnessed a few success stories and has undergone dynamic changes. However, the road ahead is entailed with innumerable challenges that result from the existing gaps between what is planned and what the sector has been able to deliver. Demand forecasting thus poses a significant role in trying to minimize these gaps.

2.4.2. Review of the existing methodologies

There are numerous methods, which are used today for forecasting the electricity demand. The methods have evolved over time from being simplistic and reliant only on past trends to the current form wherein the impact of different factors are modeled to arrive at the demand. The choice of a method is based on the nature of the data available and the desired nature and level of detail of the forecasts required. An approach often used is to employ more than one method and then compare the forecasts. This section provides the commonly used methods used for electricity demand forecasting.

2.4.2.1. Trend method

This method falls under the category of the non-causal models of demand forecasting that do not explain how the values of other variable affected the variable to be predicted. Here, the variable is expressed to be purely a function of time, rather than by relating it to other economic, demographic, policy and technological variables. Trend method is the most widely used forecasting method due to its ease of use and derivation of trend from the

⁷ CEA All India Installed Capacity as on 31st May 2017

⁸ CEA Final National Electricity Plan, 2018

available data. The inherent assumption in forecasting using trend method is that the future values will continue to growth at the same trend.

The method ignores the impact of any other factor for example, the role of incomes, prices, population growth and urbanization, policy changes etc. Therefore, it does not offer any scope to internalize the changes in factors like effects of government policy, regulatory regimes, demographic trends, aggregate and per capita growth in incomes, technological developments etc. This method is important as it provides a preliminary estimate of the forecasted variable value and is accurate in the short term.

Review of the available literature on trend method highlights that such methods are easy to use indicators that can provide a quick understanding. Though such techniques are relatively less common in academic literature, however practitioners rely on them in many cases. The trend method is used by directly deriving the growth rates from the available data e.g. sales or the growth rates are calculated from derived factors like specific consumption of electricity.

2.4.2.1.1. Use of trend method in electricity demand forecasting

The trend method is the most commonly used method in the power sector. Every utility primarily uses the trend method to forecast its sales and consumer growth. The acceptance of the method in India is quite high and the results derived are also accurate and meets the intended usage of the forecast.

This method is used by CEA in developing forecasts for EPS. The PEUM method used by CEA is a combination of trend and end use method. The 18th and 19th EPS of CEA relies on this method to forecast the consumption of most consumer categories. In the 19th EPS, the energy consumption of each distribution utility was worked out by PEUM method by forecasting for each categories using the past trends. The forecast was refined by incorporating recent trends and policy initiatives.

In the draft NEP 2016, the projections were developed based on historical growth rates. In the case of draft NEP 2016, the past electricity consumption data from the year 1979-80 to 2013-14 was taken and growth rates were derived for three different periods. Based on the review of the growth rates, suitable growth rates were assumed to work out the future projections.

2.4.2.2. Time series method

A time series is defined to be an ordered set of data values of a certain variable. Time series models, are essentially, econometric models where the explanatory variables used are lagged values of the variable, which are to be explained and predicted. The intuition underlying time-series processes is that the future behavior of variables is related to its past values, both actual and predicted, with some adaptation/adjustment built-in to take care of how past realizations deviated from those expected. Thus, the essential prerequisite for a time series forecasting technique is data for the last 20 to 30 time periods.

The difference between econometric models based on time series data and time series models itself, lies in the explanatory variables used in the model. In an econometric model, the explanatory variables (such as incomes, prices, population, GDP, temperature etc.) are used as causal factors and a relationship is derived while in the case of time series models only lagged (or previous) values of the same variable are used in the prediction.

2.4.2.2.1. Commonly used time series methods

There are innumerable time series methods available in literature and mostly in academics. However, the following two methods are most commonly used:

- Exponential Smoothing
- Auto Regressive Integrated Moving Averages (ARIMA)

Exponential Smoothing

Exponential smoothing is a technique that is usually applied to time series data, either to produce smoothed data for presentation, or to make forecasts. Whereas in the simple moving average method the past observations are weighted equally, exponential smoothing assigns exponentially decreasing weights over time. In other words, recent observations are given relatively more weightage in forecasting method than the older observations. Hence, it is preferred for short/ medium term forecasts.

Few of the exponential smoothing techniques used for forecasting are:

Simple exponential smoothing

The simple exponential smoothing considers only actual and forecasted value of the past to arrive at the forecast for the next period by assigning weights. The model ignores the trend and seasonal components of the time-series data and is represented by the following equations:

 $F_{t+1} = \alpha A_t + (1 - \alpha) F_t$

 F_{t+1} = forecasted value for period t+1

 A_t = actual value for period t

 F_t = forecasted value for this period

Where α determines the weight given to the most recent past observation and hence controls the rate of smoothing or averaging.

Brown's double exponential smoothing

Brown's double exponential smoothing is a forecasting method similar to Simple Exponential Smoothing, except that the smoothing constant in double exponential smoothing is derived by "re-smoothing" the single smoothed constant from simple exponential smoothing model. Brown's Double Exponential Smoothing is meant to be implemented on data that show a linear trend over time and for the short term only.

Holt's no seasonal trend smoothing

This model uses two smoothing constants, α and β to separately smooth the trend. It further adjusts each smoothed value for the trend of previous period before calculating the new smoothed value. In addition to the advantages of double exponential smoothing this is more flexible in that the level and trend can be smoothed with different weights. This method does not account for the seasonality.

Holts-Winter's multiplicative and additive exponential smoothing

This model extends Holt's two-parameter model by including a third smoothing operation to adjust for the seasonality. The equation assumes that the trend is additive and that the seasonal influence is multiplicative. This method models trend, seasonality and randomness using as efficient exponential smoothing process. However, the data requirement is greater than other methods

Auto-Regressive Integrated Moving Averages (ARIMA) Method

An autoregressive integrated moving average (ARIMA) model is a generalization of an autoregressive moving averages (ARMA) model. These models are fitted into a time series to better understand the data or to predict future points in the series. The model is generally referred to as an ARIMA (p, d, and q) model where the p, d and q are integers greater than or equal to zero and refer to the order of the autoregressive, integrated and moving average parts of the model respectively. This technique uses the historic values and the forecast errors to predict the future values of a time-series data. ARIMA modeling can take into account trends, seasonality, cycles, errors and non-stationary aspects of a data set when making forecasts. Since using ARIMA or any form of this method involves complex modeling and calculations, a software is ideally used to generate forecasting results.

The graphic below shows the time series option in SPSS software.

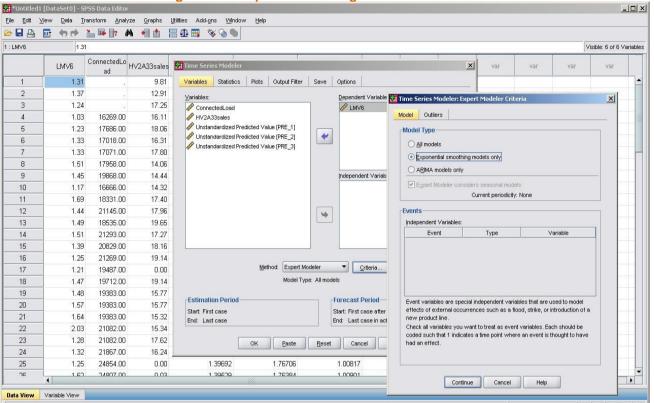


Figure 17: Snapshot a working tab in SPSS software

In the current study, the time series method will be used for short and medium terms forecasts using SPSS software to generate forecast results. The time series methods in general is not ideal for long term forecasts as the results are mostly under projected as lesser weightages are given in the longer period.

2.4.2.2.2. Use of time series in electricity demand forecasting

Worldwide, the method is being used for forecasting electricity demand in the short-term period. Due to the complexity involved, the method is mostly limited to academia and most of the literature available is from academic field. Some of the research papers have been quoted in this section to highlight the application of the technique in electricity demand forecasting.

In a research paper titled 'Very short-term electricity demand forecasting using adaptive exponential smoothing methods', the authors Abderrezak Laouafi, Mourad Mordjaoui, Djalel Dib [IEEE Explore, 2014], presented the development of three new electricity demand-forecasting models, based on the use of the adaptive Holt's exponential smoothing technique.

In a paper titled 'Forecasting monthly peak demand of electricity in India—A critique' by authors Srinivasa Rao Rallapalli and Sajal Ghosh [ELSEVIER, 2012], the authors evaluated the monthly peak demand forecasting performance predicted by CEA using trend method and compared it with those predicted by Multiplicative Seasonal Autoregressive Integrated Moving Average (MSARIMA) model. They found that the MSARIMA model outperforms CEA forecasts in all five regional grids in India. For better load management and grid discipline, this study suggested employing sophisticated techniques like MSARIMA for peak load forecasting in India.

CEA in 19th EPS has the mentioned use of time series analysis along with end use methods. The time series method has been used to derive growth indicators giving higher weightage to the recent trends to consider the benefits of energy conservation initiatives and technological changes. However, in cases where no definite trend emerged, weighted average (chronological or maximum AGR-maximum weightage) have been used for forecasting electricity demand.

2.4.2.3. Econometric methods

This is a standard quantitative approach for economic analysis that establishes a relationship between the dependent variable and certain chosen independent variables by statistical analysis of historical data. The relationship so determined can then be used for forecasting simply by considering changes in the independent variables and determining their effect on the dependent variable. In the case of electricity demand forecasting, the dependent variable is electricity consumption and independent variables can be population, consumer indices, tariffs, weather variables, time etc.

The set of potentially important independent variables to be tested in the model can be selected based out of experience and the influence of these factors is evaluated statistically. Normally the statistically relevant factors are considered and included in the estimated demand function.

2.4.2.3.1. Commonly used econometric methods

Econometric methods can be classified based on the number of independent variables used in the equation. The selection and choice of a variable is based on statistical analysis and the degree of relationship that is obtained. Accordingly, there are two broad type:

- Univariate econometric method
- Multivariate econometric method

Univariate technique

In the univariate method, the dependent variable is expressed as a function of a single independent variable e.g. population, time etc. and the relationship is developed.

Thus, in case of univariate relationship, one would have:

Y = f(POP)

Where,

Y = electricity demand

POP = population

A sample of univariate econometric model is shown in the table below wherein; only time variable (t) has been used to develop an econometric relationship.

	Table 12: Sample equations for univariate econometric model
SI.	Equation
1.	Electrical Energy Demand = 29.01978 t ³ - 966.933 t ² + 22171.28 t + 40252.89
2.	Electrical Energy Demand = 0.71 t4 - 28.85 t3 + 486.18 t2 + 8221.48 t + 56971.26

In many cases, the univariate relationship is directly established by using only one variable and the equation so developed is not further tested with additional variables as the single dependent variable alone provides a strong relationship. In other cases, the dependent variable is tested with multiple variables initially, however only one dependent variables shows a strong relationship and hence is used to develop the regression equation.

Multivariate technique

This technique is classified under multivariate techniques because it considers the causal-relationships that might exist between multiple variables, demographic, economic, weather-related etc. and the variable that needs to be

projected. Taking time-series or cross-sectional/pooled data, causal relationships could be established between electricity demand and other economic variables. The dependent variable, demand for electricity, can be expressed as a function of various economic factors. For illustration, these variables could be population, income per capita and weather related data etc.

Thus, one would have:

Y = f(X, W, POP)

Where,

Y = electricity demand

X = per capita income

W= Weather related parameter

POP = population

Several functional forms and combinations of these and other variables may have to be tried until the basic assumptions of the model are met and the relationship is found statistically significant.

Inserting forecasts of the independent variables into the equation would yield the projections of electricity demand. The sign and the coefficients of each variable, thus estimated, would indicate the direction and strength of each of the right-hand-side variable in explaining the demand in a sector.

More specifically, a single equation regression model for each variable that needs to be forecasted can represent these. The set of independent variable (i.e. variables that might affect the variable whose value is to be projected) for each such model could vary. For example, while electricity consumption by the domestic category could be a function (or affected by) of temperature of the region and GDP, consumption by Non-Domestic category could be a function of per capita income and the number of consumers in that category.

The following table provides a set of sample equations for multivariate econometric method:

	Table 13: Sample equations for multivariate econometric model					
SI.	Equation					
1.	Electrical Energy Demand = - 7093.167+ 5.6084^E-4 * (Population) – 0.00254 * (GSDP Tertiary)					
2.	Electrical Energy Demand = - 1257.306 + 1.1082^E-4 * (Population) – 0.741 * (Electricity WPI) + 0.001785 * (GSDP Secondary)					

Since the method considers the various external factors that may influence the dependent variable, it can be used for short/ medium and long term.

Test for Goodness of Fit

The goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question. This is often measured by a Pearson's chi-square test.

Pearson's chi-squared test uses a measure of goodness of fit which is the sum of differences between observed and expected outcome frequencies (that is, counts of observations), each squared and divided by the expectation. The test statistic being:

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

Where:

O_i = an observed frequency (i.e. count) for bin i

 E_i = an expected (theoretical) frequency for bin i, asserted by the null hypothesis.

The expected frequency is calculated by:

$$E_i = \left(F(Y_u) - F(Y_l) \right) N$$

Where:

F = the cumulative Distribution function for the distribution being tested.

Y_u = the upper limit for class i,

Y_I = the lower limit for class i, and

N = the sample size

The resulting value can be compared to the chi-squared distribution to determine the goodness of fit. The test for Goodness of Fit shall be run for the approaches and finally, the model that yields the best fit shall be adopted.

2.4.2.3.2. Use of econometric technique in electricity demand forecasting

The econometric approach has seen significant developments over the past three-four decades. In the 1970s, the main aim was to understand the relationship between energy and other economic variables.

In a paper titled 'The structure of world energy demand' published by the MIT Press, Cambridge, Massachusetts in the year 1979, the author R. S. Pindyck succinctly captures the following:

"We have had a rather poor understanding of the response of energy demand in the long run to changes in prices and income, and this has made it difficult to design energy and economic policies. By working with models of energy demand rather different from those that have been used before and by estimating these models using international data, we can better understand the long-run structure of energy demand and its relationship to economic growth".

The method is widely used across the world for forecasting the electricity demand for any licensee area, regional or at a national level etc. There are numerous literature available wherein econometric technique have been used to derive electricity demand.

M Ishiguro and T Akiyama in their paper titled *Energy demand in five major Asian developing countries: Structures and Prospects*' published in 1995 have analyzed energy demand in five Asian countries, namely China, India, South Korea, Thailand and Indonesia both at the aggregate level and the sector level using a simple econometric model. They had used the model for forecasting energy demand in these countries up to 2005.

In a study titled 'Regression Based Forecast of Electricity Demand of New Delhi [IJSCP, 2014] carried out by Aayush and Agam Goel, IIT Delhi, the forecast of electricity of New Delhi area was worked out using three models namely Multivariate Regression, Trend seasonality model and by ARIMA modeling. The paper discusses the significance of climatic and seasonal factors on electricity demand as well as provides a comparison of the relative accuracy of the models employed to derive the forecast.

In Draft NEP 2016, CEA has used univariate econometric forecasting technique to forecast the energy consumption at an all India level. A 3rd and 4th degree regression equation was developed with energy consumption as the dependent variable and time variables as independent variables. In the present case only time variable (t) has been used to develop the relationship.

In the 19th EPS, electricity demand forecast by econometric method has been planned by CEA. The forecast will be developed using multiple regression analysis and the electricity demand (in MU as well as MW) will be estimated for all-India, Regions and state/UT for the period from FY 2016-17 to FY 2036-37.

2.4.2.4. End-Usage method

The end-usage approach attempts to capture the impact of energy usage patterns of various zones identified in the state area. The end-usage model for electricity demand focuses the derivation of demand from the end use of a product or area. For e.g. electricity demand from usage of new land in terms of Residential, Commercial, Institutional and Industrial categories. The method takes in to account various approaches to derive the end use demand e.g. by studying the land usage norms, load per area norms and the level/stage of urbanization/development of these zones.

For example, the load in a zone (identified by the dominant consumer category) can be determined by considering factors like the total area of that zone, Percentage occupancy (stage of settlement), the space coverage norm, and the Floor to Space Index (FSI) to arrive at the effective usable area for that zone. Then this usable area is multiplied to the approximate load per area to arrive at the load for that zone. It is further multiplied with the utilization factor to estimate the effective load on the zone.

The following relation defines a tentative methodology for the land usage:

 $L_z = A \times O \times S \times F \times LA \times UF$

Lz = Utilized Load of a zone (MW)

A = Area of the zone (sq. km)

O = % of the area occupied based on the level of urbanization/development.

S = Space Coverage Norms/By-laws specified for each consumer category (% of the occupied area that can be covered by any construction)

F = Floor to Space Index specified for each consumer category

LA= Load per area (MW per sq. km)

UF= Utilization factor for each consumer category

Similar estimations can be arrived at depending on data availability to determine the expected load that may come into a system. When summed over different area in the state, aggregate energy demand for the system as a whole can be ascertained. The method is used to refine the forecasts which are obtained by other methods, by adding the expected loads.

The method is typically used in combination with other methods like time series, trends or econometric forecasts to capture demands which might not be captured by past trends or be reflected by independent variables. The additional demand arrived at by end sue method can be then suitable added to the base demand arrived at by the primary methods.

The end-use approach is effective when new technologies and fuels have to be introduced and when there is lack of adequate time-series data on trends in consumption and other variables. The approach demands a high level of detail on each of the end-uses.

2.4.2.4.1. Use of end use method in electricity demand forecasting

The technique is used to estimate specific demand from particular categories or to estimate behavioral change in a region over time. For example, the method is ideal to ascertain new demand from industrial activity in a region or to ascertain penetration of energy efficiency. The results obtained greatly help in fine tuning the forecasts developed from primary methods. The method has found application in estimating demand in specific industries and sectors

In a report titled 'India Energy Outlook: End Use Demand in India to 2020' published by Ernest Orlando Lawrence Berkeley National Laboratory in January 2009, the end use method has been used to estimate energy use in agriculture, service and industry sector in India.

CEA in the 19th EPS has also used the end use methodology to estimate the demand from HT Industries above 1 MW. The electricity consumption for LT Industries and HT industries with demand less than 1 MW has been projected on the basis of past trends and programme for development in future, as indicated by state authorities. In the case of H.T. Industries with demand of 1 MW and above, projection is based on the information furnished by end users/state utilities.

2.4.2.5. Benefits and challenges of using the forecasting methods

Method	Benefits	Challenges
Trend method	 Simplicity and ease of use in deriving the forecasts The results obtained in the short and medium terms are fairly estimated Skill and data requirement is very low The models are more tractable and changes are easily reflected No additional data required other that the historical data of the variable to be projected 	 The method ignores possible interaction of the variable under study with other economic factors The method cannot be relied upon for long term projections The method cannot incorporate or capture directly the role of certain policy measures/ economic shocks/ new technology that might result in a change
Time series method	 The method gives good estimates for the short term period e.g. monthly forecasts for a shorter period The data requirement is lesser in sense that only historical data of the single variable to be predicted is required Skill requirement is moderate and can be used in excel also 	 The method do not describe cause and effect relationship between variables Estimates for long term period are not reliable The method cannot incorporate or capture the role of certain policy measures/ economic shocks/ new technology that might result in a change in the behavior
Econometric method	 The method considers the casual relationship between variables It provides good estimates of forecasts across forecast horizon The method is suitable for short, medium and long term forecasts The econometric method is flexible and can be carried for differently for short/medium and long term forecast by selecting different independent variables 	 In some cases, no causal relationship might be found upon which other techniques have to be used A drawback of the method is its dependence on the forecast of the independent variables Skill requirement is high as knowledge of statistics is required The method requires more data in comparison to other methods as additional data of independent variables is required.
End Use Method	 The method is used to estimate demand from specific industries or to ascertain new loads 	 The method may lead to a mechanical forecasting of demands. Hence sector knowledge and application of judgement is important

- It can be used to ascertain impact of new technology when no historical data is available or to understand behavioral change
- End use doesn't require high skill in gathering data and is not data intensive
- The method faces challenges due to non-cooperation from the target end user
- It also does not factor in the variations in the consumption patterns due to demographic, socio-economic, or cultural factors

There are various other advanced methods and techniques that can be used for demand forecasting and which are currently employed across the world. These include- Artificial Neural Networks, Fuzzy systems, simulated annealing, Hybrids etc. As of now, only few firms and educational institutes like IITs have the requisite expertise in using these techniques in India.

2.4.3. Demand forecasting

Central Electricity Authority (CEA) is the nodal agency that undertakes demand forecasting of power for the country in all India level, regional level, state level as well as the distribution utility level. It conducts the Electric Power Survey (EPS) periodically. CEA has been using PEUM for making the projections in power demand. In the 18th EPS published in December 2011, Econometric techniques were also being used to validate the forecasts. PEUM method that has been in use by the CEA is basically a bottom-up approach. The 19th EPS also uses the PEUM to undertake the demand forecasting. The forecasting categories that are adopted include-Domestic, Commercial, Public lighting, irrigation, industrial, railways etc.

2.4.3.1. Electric Power Survey (EPS) by CEA

The 19th Electric Power Survey Committee was constituted by CEA in June, 2015 and the Committee decided to undertake the electricity demand forecast of Distribution Companies, Mega Cities and National Capital Region and also the electricity demand forecast by Econometric Method. The Volume-1 of the 19th Electric Power Survey Report, currently published, covers the electricity demand forecast of Distribution utility s/States/UTs/Regions and for the country.

The basic objective of the 19th EPS is given as under:

- To forecast the year wise electricity demand for each Distribution utility, State, Union Territory, Region and all- India in detail up to the end of 13th Plan i.e. for the years 2016 -17 to 2021 -22. The category wise forecast at the distribution utility level has also been provided.
- To project the perspective year wise electricity demand for 14th plan i.e. from 2021-22 to 2026-27 and the terminal years of 15th & 16th five year plans i.e. year 2031-32 & 2036-37.

2.4.3.1.1. Methodology adopted by CEA

Partial End Use Method (PEUM)

The following broad methodology has been adopted by CEA for the electricity demand forecast in the 19th EPS:

- CEA has continued with the usage of PEUM as the base method for demand forecasting. The PEUM is
 a combination of time series and end-use methods with higher weights given to short term so as to
 consider recent trends.
- Energy consumption of each Distribution utility was worked out by PEUM method by forecasting for each categories using the past trends. The forecast was refined by incorporating recent trends and policy initiatives.
- The energy requirement of each Distribution utility was worked out by adding the corresponding Transmission losses (intra-state) and Distribution losses considering the projected reduction in the losses

- The total energy consumption of the state was worked out by aggregating the energy consumption forecasted for each Distribution utility present in the state
- The total energy required of the state was worked out by aggregating the energy required by the Distribution utility s in the state
- The Peak demand of the Distribution utility was worked out by assuming a suitable load factor which was arrived based on trend analysis
- The Peak demand of the State was obtained by applying suitable diversity factor to the peak demand of the Distribution utility
- The total energy projected for the state was then grossed up with inter-state/ regional transmission losses to arrive at the ex-bus energy requirement for the state

Impact of Policy initiatives considered in the EPS

The power sector saw numerous policy initiatives being brought out by the Government in order to improve the power situation in the country. The EPS has considered the policy measures in the final forecast by way of suitable assumptions. The methodology adopted for major policy and programs are given as under in brief

Reduction in AT&C losses

The targeted trajectory to reduce losses is to about 13% by the year 2021-22 on an all India basis. However the on ground AT&C loss of the Distribution utilities are on the higher side. Hence in the EPS, the trajectory submitted by the Distribution utilities has been considered to arrive at the energy required.

DSM, Energy Conservation and Efficiency improvement programs

The impact of various efficiency programs like Standards and Labelling, Perform Achieve Trade (PAT) scheme in Industries, LED distribution program etc. would lead to overall reduction in the energy requirement and peak demand. The impact of such initiatives has been factored in the EPS.

Power for All (PFA) initiative

The Government of India PFA initiative aims to connect all un-electrified consumers by the year 2019 and to provide quality and uninterrupted power to all. Since the initiative would result in growth in the demand for power for the shorter term, the same has been considered in the EPS.

Dedicated Freight Corridor

Based on the freight corridor and railway electrification plan, the impact of increased demand for power has been considered.

Make in India

Since the initiative is to encourage manufacturing of products in the country, there will be increased demand in the commercial and industrial sector. The same has been incorporated by the Distribution utility s in their forecast that has been submitted to CEA.

Roof Top Solar programme

The policy for Renewables has set a target of 40 GW to be installed in the solar rooftop program by the year 2022. This will be a substantial addition and would lead to some of the local demands being met from the energy that will be generated locally leading to lesser demand on the grid.

Electric Vehicles (EV)

The growing push for EV (e-rickshaws, 2-3-4 wheelers etc.) and the green mobility programs should lead to an increase in power demand requirement. However, as per the estimates of CEA, the net addition would be under manageable limits even if the targets of the Government for EVs are met.

Captive Power pants

From the historical trend, it has been observed that the CAGR of energy consumed from captive power plants from the period 2010-11 to 2014-15 is about 8.7%. It has been assumed that in the future, there will be improvement in the supply from the grid due to which the demand for captive plants will decrease. About 15% up to 2021-22 and 25% by 2026-27 could be replaced by electricity from the grid gradually.

Methodology adopted by CEA for individual categories

The projection for the period up to 2026-27 has been carried out based on various consumer categories. The methodology adopted in each is briefly given in the following:

Domestic

The forecast for the domestic category has been arrived at by considering the number of consumers during the mid-year for each year and the specific consumption (average power consumption per consumer). Considering the PFA programme, all the households have been considered by the year 2018-19. The specific consumption has been worked out using historical trends and with suitable assumptions for increased supply hours, improvement in economic conditions, efficiency programs etc. A marginally increasing trend has been considered.

Commercial

The consumption for the category has been estimated by considering the number of consumers during the mid-year for each year and the specific consumption (average power consumption per consumer).

Public Lighting and Public Water Works

The consumption in the category has been projected based on the connected load and the average consumption of connected load or supply hours. The estimations are totally assumptions based as the inputs like connected load and supply hours have been worked out as per assumptions.

Irrigation

The power demand for irrigation has been worked out by projecting the number of pumps in mid-year, the average capacity of each pump and the average consumption per load or hours of operation with assumptions. The demand for lift irrigation has been considered based on the end use worked out based on the programme of development of lift irrigation schemes indicated by Distribution utility s/ State Authorities.

Industry

For projecting the demand from the industrial sector, CEA relied on the historical trends and the end use data. For LT Industries and HT Industries with less than 1 MW load, the projection were based on historical trends. For HT industry with more than 1 MW, the end use data submitted by States/ Distribution utilities etc. were used to arrive at the projections.

Railway Traction

The estimates for Railway have been carried out based on the existing requirement and the track electrification programme envisaged by Ministry of Railways/Railway Board.

Bulk Non-Industrial HT Supply

The bulk demand for major institutions, Government and Private establishments, defense etc. has been considered as per end use demand forecasted by the Distribution utility s. Bulk supply also includes supply to Distribution Licensees, which have been considered as point load by the main Distribution Licensee, open access consumers and SEZ's.

Methodology adopted for other major parameters

Once the projections for individual categories were developed, to arrive at the peak demand and to determine the overall energy requirement, major parameters like Load Factor, Diversity Factor, T&D Loss etc. were suitably projected and considered. The section below provides a brief about the methodologies adopted:

Transmission and Distribution loss

The T&D loss has been considered as per the trajectory submitted by the Distribution utilities. However, the Distribution utilities were not able to segregate the transmission and distribution losses at their end, hence the intra state Transmission losses were also considered with the loss of the Distribution utilities. The total Intra State T&D loss for the state will be the sum of the Intra State T&D loss considered for each Distribution utility. The interstate T&D loss has been added to the energy requirement of the state to arrive at the energy requirement for the state at the ex-bus of generating end.

Load factor

As given in the EPS, the load factor depends on the consumers mix and the pattern of utilization of the load. Before estimating the future load factors for individual states, CEA carried out a detailed analysis to ascertain the influence of load mix on the load factor. However the details of the analysis and the results are not mentioned in the EPS.

Diversity factor

The energy requirement for the country has been worked out by aggregating the energy requirements of all the states. Peak demand on all India basis has been calculated by taking diversity factor among the regions. CEA has provided the region specific diversity factor arrived as per trend analysis.

2.4.3.1.2. Demand Projections as given in EPS

The 19th EPS provided projections for All-India, Region wise, State and up to the Distribution utility level for the period FY 2016-17 to FY 2026-27. The projections included energy consumption, energy requirement, peak demand, T&D losses etc. The projections for the period also includes category wise consumption at the Distribution utility level.

For the period beyond 2026-27, CEA has provided perspective demand projections for the terminal years 2031-32 and 2036-37 up to the state level.

Electricity demand projection from 2016-17 to 2026-27

The electricity demand in terms of energy consumption has been forecasted category wise for each Distribution utility for each state and then aggregated to arrive at the regional and all India level forecast.

Table 14: Projections at All-India level for the period FY 2016-17 to FY 2020-21						
	FY 2016-17	FY 2017-18	FY 2018-19	FY 2019-20	FY 2020-21	FY 2021-22
Electrical Energy Consumption (MU)	920,837	994,382	1066,989	1144,579	1222,286	1300,486
Electrical Energy Requirement (MU)	160,429	1240,760	1317,962	1399,913	1483,257	1566,023
Peak Electricity Demand (MW)	161,834	176,897	188,360	200,696	213,244	225,751
T&D losses	20.65	19.86	19.04	18.24	17.59	16.96
Derived load factor (%)	81.85	80.06	79.87	79.62	79.40	79.18

	FY 2022-23	FY 2023-24	FY 2024-25	FY 2025-26	FY 2026-27
Electrical Energy Consumption (MU)	1380,197	1463,505	1551,066	1644,635	1743,036
Electrical Energy Requirement (MU)	1650,594	1739,618	1836,001	1939,111	2047,434
Peak Electricity Demand (MW)	238,899	252,288	266,844	282,418	298,774
T&D losses	16.38	15.87	15.52	15.19	14.87
Derived load factor (%)	78.87	78.71	78.54	78.38	78.23

Table 16: CAGR of the projections						
CAGR (%)	FY 2010-11 to FY 2015-16 (Actual)	FY 2015-16 to FY 2016-17	FY 2016-17 to FY2021-22	FY 2021-22 to FY2026-27		
Electrical Energy Consumption (MU)	-	8.00	7.15	6.03		
Electrical Energy Requirement (MU)	5.28	6.42	6.18	5.51		
Peak Electricity Demand (MW)	4.63	9.32	6.88	5.77		

Perspective Electricity demand projection for FY 2031-32 and FY2036-37

The perspective electricity demand in terms of energy consumption for the terminal years of FY 2031-32 and FY 2036-37 has been forecasted for each state and then aggregated to arrive at the regional and all India level forecast.

Table 17: Perspective electricity demand for FY 2031-32 and 2036-37						
	Electri	cal Energy Requir	CAG	R (%)		
	FY 2026-27	FY 2031-32	FY 2036-37	FY 2026-27 to FY 2031-32	FY 2031-32 to FY 2036-37	
Electrical Energy Consumption (MU)	1743,036	2192,305	2672,302	4.69%	4.04%	
T&D Losses (%)	14.87%	13.37%	12.37%	-	-	
Electrical Energy Requirement (MU)	2047,434	2530,531	3049,478	4.33%	3.80%	
Peak Electricity Demand (MW)	298,774	370,462	447,702	4.40%	3.86%	
Derived Load Factor (%)	78.23%	77.98%	77.76%	-	-	

Comparison between 18th EPS and 19th EPS projections

The 18th EPS was published in December 2011 and projections were developed based on the prevailing situations at that time and with a view that demand will increase at a sustained rate over the years. However, the actual growth of electrical energy requirement and peak electricity demand was less as compared to the

projections. The variations in the years in the shorter term was $\sim 1\%$ between the forecast and the actual. However, over the period, the difference increased and there was greater variation towards the terminal years.

	Table 18: Comparison of Energy Requirement between 18th and 19th EPS							
Year	1	Actual Energy	Difference	18 th EPS	Actual CAGR	19 th EPS	Difference 18 th EPS vs	
i edi	(MU)	requirement (MU)	(%)	(%) CAGR (%)		Projections	19 th EPS (%)	
2010-11	870,831	861,591	(1.06%)	-	-	-	-	
2011-12	936,589	937,199	0.07%	7.55%	8.78%	-	-	
2012-13	1007,694	995,557	(1.20%)	7.59%	6.23%	-	-	
2013-14	1084,610	1002,257	(7.59%)	7.63%	0.67%	-	-	
2014-15	1167,731	1068,943	(8.46%)	7.66%	6.65%	-	-	
2015-16	1257,589	1114,408	(11.39%)	7.70%	4.25%	-	-	
2016-17	1354,874			7.74%		1160,429	(14.35%)	
2021-22	1904,861	-	-	-	-	1566,023	(17.79%)	
2026-27	2710,058	-	-	-	-	2047,434	(24.45%)	

The table below provides a comparison between the 18th EPS projections, the actual demand and the 19th EPS projections:

Table 19: Comparison of Peak demand between 18th EPS and 19th EPS

No	18th EPS	Actual Energy	Difference		Actual CAGR	19 th EPS	Difference
Year	projections (MW)	requirement (MW)	(0/) CACP $(0/)$			Projections	18 th EPS vs 19 th EPS (%)
2010-11	122,287	122,287	0.00%	-	-	-	-
2011-12	132,685	130,006	(2.02%)	8.50%	6.31%	-	-
2012-13	143,967	135,453	(5.91%)	8.50%	4.19%	-	-
2013-14	156,208	135,918	(12.99%)	8.50%	0.34%	-	-
2014-15	169,691	148,166	(12.58%)	8.63%	9.01%	-	-
2015-16	183,902	153,366	(16.60%)	8.37%	3.51%	-	-
2016-17	199,540			8.50%		161,834	(18.90%)
2021-22	283,470	-	-	-	-	225,751	(20.36%)
2016-27	400,705	-	-	-	-	298,774	(25.44%)

The comparison of projections for 18th and 19th EPS highlight that there has been a reduction in the forecast in 19th EPS as compared to that of 18th EPS. The current base year projections have been reduced by about ~ 15% and for peak demand, the projections have come down by ~ 19%. The reason for such a reduction is considering the actual situation in the country which didn't pick up as projected in the 18th EPS. The projections in the 19th EPS are also considering all the initiatives that the government as rolled out in the recent past.

2.4.3.2. Draft National Electricity Plan 2016

During the release of the Draft NEP 2016, the 19th EPS was under draft stage. Hence for undertaking generation and transmission expansion planning studies, demand projections were developed.

2.4.3.2.1. Methodology 1 – using historical growth rates and aggregating of demand of individual State/UT

The forecast of electricity consumption of all the States/UTs has been done by adopting suitable growth rate, from which the electrical energy requirement of each States/UT was obtained by adding T&D loss of the State/UT. Electrical energy requirement at all-India level was obtained by aggregating the electrical energy requirement of all the States/UTs.

Past electricity consumption data from the year 1979-80 to 2013-14 was taken from General Review Report of CEA. The effect in electricity consumption on account of Power for All, DSM, Energy Efficiency etc. were suitably incorporated. However, no detailed methodology was provided regarding the same.

Groups	Data period	Reason
I	Electricity consumption from 1979- 80 to 2013-14	To observe overall effect of pre and post Electricity Act
II	Electricity consumption from 2000- 01 to 2013-14	Covers the period immediately preceding the enactment of Electricity Act, 2003 and period of reforms
Ш	Electricity consumption from 2009- 10 to 2013-14	Covers the period of latest trends of growth

The growth rates were calculated for three periods

Based on the review of the growth rates, suitable growth rates were assumed to work out the future projections. The forecasts for each state/UT was worked out and then added to arrive at the all India energy consumption. The actual T&D loss considered for the year 2013-14 was taken and a reducing trend was assumed. The State/UT wise electrical consumption was grossed up with the T&D loss to arrive at the electricity requirement. The load factor was also assumed and a decreasing trend was considered for future years. The peak demand on all India basis was worked out using the load factor considered.

2.4.3.2.2. Projection using historical growth rates

The projections were developed as per the methodology mentioned to arrive at the electrical energy required and peak demand on an all India basis.

Year	Electrical Energy requirement (MU)	CAGR (%)	Peak Demand (MW)	CAGR (%)
2016-17	1230264	-	170950	-
2021-22	1748251	7.28	244753	7.44
2026-27	2335987	6.00	329998	6.15

The draft NEP 2016 also calculates the decrease in energy requirement and peak demand due to measures such as DSM, Energy Efficiency and conservation factors. Since the detailed calculation has not been provided regarding the assumptions taken, hence it is difficult to ascertain the how the values have been arrived at.

Year	Electrical Energy requirement (MU)	CAGR (%)	Peak Demand (MW)	CAGR (%)
2016-17	1204264	-	163673	-
2021-22	1611251	NA	235317	NA
2026-27	2131987	NA	317674	NA

2.4.3.2.3. Methodology 2 - using Regression method

In the second method, econometric technique was used to forecast the energy consumption at an all India level. Since it's a top down approach, the forecast arrived at is not after aggregation of demand from states but is at the all India level. 3rd and 4th degree Regression equation was developed with energy consumption as the dependent variable and time variables as independent variables.

Table 22: Regression equations developed					
SI.	Equation	Coefficient of determination			
1.	Electrical Energy Consumption	$R^2 = 0.98646$			
	= 29.01978 t ³ - 966.933 t ² + 22171.28 t + 40252.89				
0	Electrical Energy Consumption	$R^2 = 0.98745$			
۷.	= 0.71 t ⁴ - 28.85 t ³ + 486.18 t ² + 8221.48 t + 56971.26	κ ⁻ = 0.98745			

2.4.3.2.4. Projections using Regression method

The using the equations derived, the electrical consumption for every year at an all India level was calculated up to the year 2026-27. The electrical energy requirement was calculated by grossing up with the derived T&D loss. For comparison, the table also provides the projections arrived earlier using the historical growth rates.

Year	Based on G	Based on Growth Rate		4 th degree Regression equation		Regression ation
	Electrical Energy Consumption (MU)	Electrical Energy Requirement (MU)	Electrical Energy Consumption (MU)	Electrical Energy Requirement (MU)	Electrical Energy Consumption (MU)	Electrical Energy Requiremen (MU)
2016-17	973237	1230264	966852	1222198	939221	1187270
2017-18	1059641	1328124	1046093	1311144	1006798	1261893
2018-19	1151273	1430242	1132498	1406917	1078884	1340312
2019-20	1246443	1534152	1226566	1509686	1155652	1422404
2020-21	1345034	1639854	1328813	1620078	1237277	1508478
2021-22	1448067	1748251	1439773	1738238	1323933	1598384
2022-23	1556000	1859917	1559996	1864693	1415794	1692326
2023-24	1668763	1974589	1690048	1999775	1513035	1790321
2024-25	1786027	2091826	1830514	2143930	1615828	1892386

Table 23: Forecasts developed using both the methodologies

2025-26	1908486	2212333	1981996	2297546	1724349	1998880
2026-27	2036057	2335987	2145110	2461105	1838771	2109639

2.5. Summary

The findings in the chapter are summarized below:

Sector	Duration	Projection by	Method	Other details
Coal	upto FY 27	CEA	Top down	 Coal demand derived based on historical growth rates
	upto 2047	NITI Aayog	Top down	 Demand and supply side forecast Four scenarios developed Different growth rates for scenarios considered
Renewable Energy	upto 2022	MNRE	Top down	 Policy decision to install renewable capacity of 175 GW by 2022
	upto 2027	CEA	Top down	 275 GW of renewable capacity by 2027 in final NEP'18
Oil & Gas	Released yearly	PPAC/ MoP&G	Bottom up	 Demand of individual petroleum products derived using historical growth rates
	2022, 2030 and 2047	NITI Aayog	Top down	 Share of O&G in primary energy derived for three specific years Four scenarios were also developed
Electricity	Upto FY2027, FY 2032 and FY 2037	19 th EPS by CEA	Bottom up	 Forecasts developed at Utility, State & National level across consumer categories Partial end use and econometric method
	Upto FY 2027	NEP by CEA	Top down	 National level supply side planning Forecasts of 19th EPS is used to undertake planning

The review of the sectors was focused on identifying the specific methodologies used. It was observed that a mix of top down and bottom up methodologies are being used and most of the methodologies relied on using historical growth rates, assumptions and scenarios.

3. Linkage between primary energy and power demand

3.1. India: Current energy scenario

The growth in India's economy has led to an ever increasing demand for energy in the country. As per the India Energy Outlook report 2015 of International Energy Agency (IEA), the primary energy demand of India has doubled since the year 2000. Even though India has consistently improved upon the energy intensity, it is still below the global average and in comparison with developed nations. The tables below highlight the energy intensity for India and that of other nations.

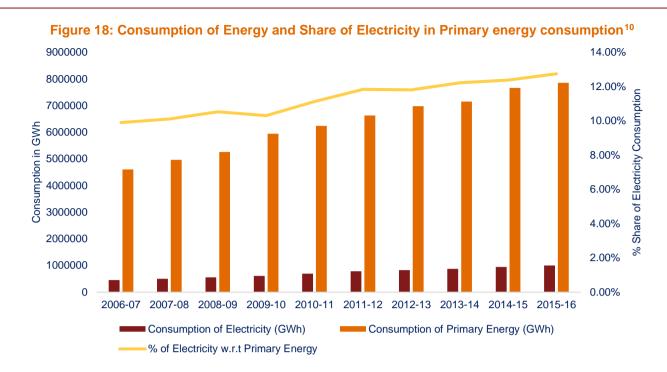
Table 24: Energy Intensity⁹

Country	Energy Intensity (Kgoe/US\$)
United Kingdom	0.102
Germany	0.121
Japan	0.125
Brazil	0.134
USA	0.173
China	0.283
India	0.191

Energy is linked to the standard of living of citizens of any country. With nearly 304 million Indians without access to electricity and energy access still a distant dream of many millions in the country, it may be acknowledged that the country has a long way to go on securing its energy security objective. For India with an ever growing population and with an aim to be a developed country, it is of utmost importance to have focused efforts towards the energy sector. The recently published Draft National Energy Policy (NEP) aims to chart the way forward to meet the Government's recent announcements in the energy domain. The Government plans to electrify all the census villages, and achieve universal electrification with 24x7 electricity by the year

2022. The share of manufacturing in our GDP is to go up to 25% from the present level of 16%, while the Ministry of Petroleum is targeting reduction of oil imports by 10% from 2014-15 levels, both by 2022. As of July 2017, around 18% of the villages are still to be electrified. Other notable targets are to achieve reduction of emissions intensity by 33%-35% by 2030 over 2005, achieving a 175 GW renewable energy capacity by 2022, and to have a share of non-fossil fuel based capacity in the electricity mix at above 40% by 2030.

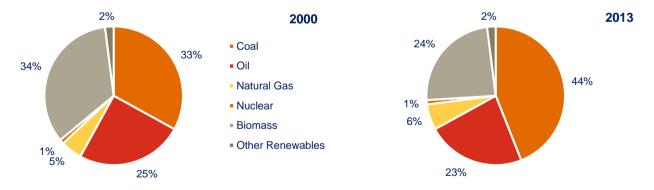
India at the current situation is at the cusp of a change with multiple factors and policy reforms affecting demand and supply scenario. The pace has picked up and needs to be sustained over time. The country at present offers tremendous opportunities and scenarios. The road ahead will depend on which scenario will be followed.


3.2. Historical linkage between Primary Energy and Power demand

Primary energy consists of the energy derived from primary sources like coal, oil, natural gas etc. whereas electricity is a secondary energy formed after conversion from primary energy sources. Primary energy can be conventional and renewable. The use of primary energy as a measure ignores conversion efficiency. Thus forms of energy with poor conversion efficiency, particularly the thermal sources, coal, gas and nuclear are overstated, whereas energy sources such as hydro which are converted efficiently, while a small fraction of primary energy are significantly more important than their total raw energy supply may seem to imply.

Historical data highlights a linkage between primary energy and electricity demand and over the period, the share of electricity has been growing at a steady rate. The figure below highlights the trends in consumption of Primary Energy and specific to electricity as such.

⁹ World Energy Outlook 2011


Alternate methodology for Electricity demand assessment and forecasting

From the figure above, it is observed that there has been a steady rise in the share of electricity consumption in the past ten years from around 9.90% in the year 2006-07 to about 12.75% in the year 2015-16. Considering the trend it can be safely extrapolated that the trend will continue in the future also. With the recent push from the Government in the energy sector and with the targets of the Government for providing access and quality power, the share is bound to increase.

From the supply side, around three quarters of India's primary energy needs is met by fossil fuels, amongst which coal is the primary source followed by petroleum. With the increase in demand, the dependence on coal has also increased with coal contributing to 44% of the energy mix in 2013 from about 33% in the year 2000 as shown in the figure¹¹ below. Over the same period, oil and natural gas has maintained a constant share of ~ 30% of the energy mix.

Figure 19: Primary demand by fuel

On the demand side, since nearly 70% of the electricity generation capacities are still linked with coal as a primary source, the increased requirement of coal can be attributed to the electricity demand which has also consistently grown over the years. The demand for electricity is bound to increase over the years and most of it will be met with the coal only. With current all India PLF of plants at around 57.43%¹² as on June'17, it is important to note that the increasing demand will be met first by utilizing the available capacity before new plants are being planned.

¹⁰ Energy Statistics 2017, MoSPI

¹¹ India Énergy Outlook, IEA

¹² CEA Power Sector, June'17

Also with increasing share of renewables in the generation capacity and Government commitment in the COP21 regarding cutting of emissions, the share of fuel in the primary energy pie may undergo some changes.

3.3. Effect of New influencers on the Power sector

There are several factors which impact the overall electricity demand in any region. Traditionally, these factors have been impacting the demand growth of electricity over the years. A growth in population directly impacts

demand for electricity or any variation in weather related parameters impact the demand in any region. Therefore these factors are looked into in detail and analyzed while developing the forecasts for any region or utility. In the present study also, the impact will be studied while undertaking the forecast.

Other than the traditional factors, various additional factors have also been identified and it is anticipated that these new influencers would affect the demand-supply scenario of power in the country in future. Hence it is important that such factors are looked in in the present study.

Traditional factors which impact demand

- Economic development
- Population growth
- Infrastructure development
- Industrial growth
- Weather related factors
- Network parameters

The influencers have been categorized into nine broad categories and is highlighted in the figure below:

Figure 20: New influencers expected to impact electricity demand- supply

1. Policy Intervention Interventions might have a significant impact on the consumption/ demand pattern of the consumers

2. PFA/ Saubhagya scheme Demand & energy requirement from categories may change

4. Self Generation Consumption from Grid by pro-sumers may become variable and intermittent

6. Megatrends Demographic, social change, urbanization etc.

may lead to increase in per capita consumption

8. Renewables Variable and intermittent pattern of supply may impact Demand – Supply characteristics 3. Rural Electrification Uncertainty in growth from domestic, commercial cat etc. as well as loss trajectories

5. Energy Efficiency EE measures may lead to reduction/ rebound in energy requirement and peak demand

7. Competition Open Access, Deemed Licensees, Parallel licensees etc. may have

licensees etc. may have impact D-S scenario

9. Technology EVs, Energy storage, Smart Grid etc. solutions may impact demand & consumption pattern

These identified new influencers would affect the future demand supply scenario in the country and also in the end impact the primary energy requirement in the country. The effect of the new influencers are provided below:

Policy interventions

Interventions as related to the policy guidelines of the government can have a significant impact in the demand-supply scenario of power in the country. The interventions have a direct impact on the sectors. In the past few years, the focus has been on promoting renewable energy especially solar followed by wind. Accordingly the impact is visible in terms of capacity additions and stakeholder interest that are being developed.

Power for All and Saubhagya scheme

The PFA scheme is expected to improve the entire value chain of the power sector and ensure reliable and uninterrupted electricity supply to all households, industries and commercial establishments. The target is to provide reliable and continuous power supply for all by the year FY2018-19. Power supply to irrigation and unconnected households are also supposed to increase within that time frame. The Saubhagya scheme is targeted more towards ensuring last mile connectivity in urban and rural areas and to release electricity connections to electrified households in the country. With such changes happening, the overall demand and category wise consumption patterns may increase. In order to capture the revised consumption pattern, projection of category wise consumption will be required at a circle/ sub-divisional level. The demand forecasting techniques need to incorporate specific trends at the consumer level.

Rural electrification

The scheme under DDUGJY focuses on reforms in the rural power sector through separation of feeder lines (rural households and agriculture) and strengthening of distribution as well as transmission infrastructure. As per the data available from MoP, as on August 2017, 3276 villages are to be electrified out of the targeted 18,452 villages i.e. ~ 18% of the villages are to be electrified as on date. These electrification is expected to impact the demand of electricity in the rural areas. Strengthening and augmentation of infrastructure can also impact the consumption patterns and the latent demand from the rural areas will be realized. Since these loads were not considered historically, in future it will impact the demand. With more infrastructure, the actual losses may also vary from the targets and will have an impact on the overall supply that will be required in future.

Self-generation

Earlier self-generation measures were encouraged owning to high tariffs, unreliability of power supply and some enabling regulatory provisions. Presently, there is a reform push for self-generation and also as a means for areas wherein grid has not reached. Such measures (e.g. solar rooftop) may make the consumption patterns of the households quite variable and intermittent. Increasing tariffs may make consumers shift to a more cost-saving self-generation measures. The consumer of the past may become a pro-sumer. With evolving and enabling regulatory provisions of net metering and upcoming focus on storage solutions, a major demand from the DISCOMs is expected to be reduced in future.

Energy efficiency

Energy efficiency is expected to reduce the electricity demand and peak load. However, research has suggested that the behavior of households are different then what is expected while designing the policies. The effect is known as the rebound effect in energy efficiency. Similar situation may also happen in India though it is early to arrive at any conclusions. Also, though energy efficient appliances are purchased but are not used instantly and most of it are kept as spare. So the impact is no directly related to the purchase of an appliance but pertaining to its usage. Hence, an overall assessment will have to be made to ascertain the impact of energy efficiency.

Megatrends

Various evolving megatrends can be seen in the economy today. Some of these trends can have an influence in altering the demand-supply scenario. Some of these megatrends include population growth and other demographic changes (e.g. increase in share of young people changing the population structure), social changes, economic growth and development, rapid urbanization (e.g. penetration of international lifestyles among middle classes), shift of population from rural to urban areas and increase in the living standards of the people.

Competition

With the changing dynamics of the power sector, competition is set to rise. Few features of competition include open access, parallel licensees, deemed licensees (Railways, SEZs) and local decentralized

energy systems. With consumers shifting to open access, the power demand of the distribution licensees would change. Also, with increase in competitive environment owing to better pricing and procurement policies, the distribution licensees would be required to plan their procurements in an effective way.

Renewable energy

The total installed capacity of renewable power is 58.3 GW as on June 2017 and it is projected to achieve an installed capacity of 175 GW by the year 2022. The increase in capacity of renewables will affect the demand supply scenario in the country and also affect grid operations. Due to the inherent seasonal/daily variation in generation from the renewable sources, consumption patterns of consumers may be impacted. For example, the generation of wind power is highest during the summers and solar power is directly available only during the daytime. With new technologies like solar roof-top and expected increased penetration of Electric Vehicles (EV), the consumption behaviors may undergo changes.

• Technology – EV, Storage solution, Smart Grid, RE Hybrids etc.

Technology is evolving and continue to make its mark in the power sector. In the near future, technologies such as smart grids, advanced metering, energy storage solutions, RE hybrids and electric vehicles are expected to play a greater role in the power sector in the country. The increase in efficiencies due to technological interventions and subsequent fall in prices of energy storage solutions may change the demand patterns of consumers by increasing the scope for self-generation. The storage solutions is also expected to play a critical role in grid stability with increased penetration of renewables in the Grid. Further, the complimenting nature of generation from solar and wind sources on an intraday as well as on annual basis presents RE hybrids as a potential solution to the large scale grid integration of renewables. The Government's evolving policies aim at EVs playing a greater role in mobility as well as storage solutions and for developing the EV charging infrastructure. The advent of the technologies highlighted is expected to impact the power demand in the future. However the exact impact on power and primary energy can only be gauged based on the strategic directions which are considered now.

The new influencers identified in this chapter is expected to change the existing demand supply scenario and hence it is essential that the impact is captured in the forecast. The subsequent chapter deals in detail about overall alternate methodology proposed for the study.

3.4. Effect of New Influencers on the Primary Energy

Since there is a direct linkage between the power demand and primary energy, any impact in the power demand will affect the primary energy in terms of change in the primary energy mix of the future or in the overall requirement. With increasing demand over time, there will be an overall and continuous increase in the primary energy requirement. But the new influencers identified will affect the mix of the primary energy and how the increased energy requirement will be met in the future. The change in the share of energy sources will mean an interplay between the sectors.

Considering the case of increased EV penetration expected in the future, there will be demand for power to meet the charging needs. During day time, more power will be required to meet the increased day time commute. This demand for power may be met by increased generation from renewable sources e.g. solar which peaks during day time. In case, the renewable fueled charging stations draw the requisite mount of power from non-conventional sources during the substantial period of the day, the demand for power from conventional sources would be less in future thereby lesser coal will be required. This highlights the effect of one sector on another wherein an expected increased demand is being met by an increase in share of renewables thereby reducing the dependence on the existing dominant sources. This interplay between the sectors has a direct impact on the primary energy mix and the requirement of energy in the future.

3.5. Expected linkage between Primary energy and power demand

In June 2017, NITI Aayog has released the draft Energy Policy, 2017 wherein the future of India in terms of Energy were outlined. As per draft policy *"the energy demand of India is likely to go up by 2.7-3.2 times between 2012 and 2040 with the electricity component itself rising 4.5 fold".*

NITI Aayog has developed the India Energy Security Scenarios 2047 wherein projections have been done both from a supply and demand perspective considering possible scenarios like as business as usual and ambitious scenarios. The as usual scenario is considering the current conditions and the ambitious scenario considers future efficiency improvements and is cleaner and sustainable.

Some of the assumptions considered in developing the scenarios are

- GDP of the economy is assumed to grow at a CAGR of 8% between 2012 and 2040
- The Population will grow from 1.2 billion to 1.6 billion
- Attainment of development ambitions like Power for All by 2022, Housing for All by 2022, 100 Smart Cities, 175 GW Renewable capacity by 2022
- In developing the two scenarios, different efficiency levels and technological measures were considered which will lead to variation in the final projections

The supply side projections are for primary energy sources like Coal, Oil, Gas, Renewable and others etc. whereas the demand side projections are considering various broad sectors like Industry, Buildings, Transportation, Telecom, Cooking, Pumps and Tractors etc.

Based on the projections, the share of electricity in energy demand has been arrived as given in the following

Table 25: Share of electricity in primary demand					
	20)22	2040		
Scenario	As usual	Ambitious	As usual	Ambitious	
Share of electricity in primary energy demand	19.6%	20.4%	23.2%	26.1%	

The supply scenario has also been developed considering that the energy demand works on the principles of a reduction in import dependence, and a transition towards cleaner and sustainable supply options. The future scenarios have also considered increased penetration of renewables, lower dependence on oil and coal, possibilities of storage facilities, improvement in gas situation etc.

The following table provide the primary energy supply for three years namely 2012, 2022 and 2040.

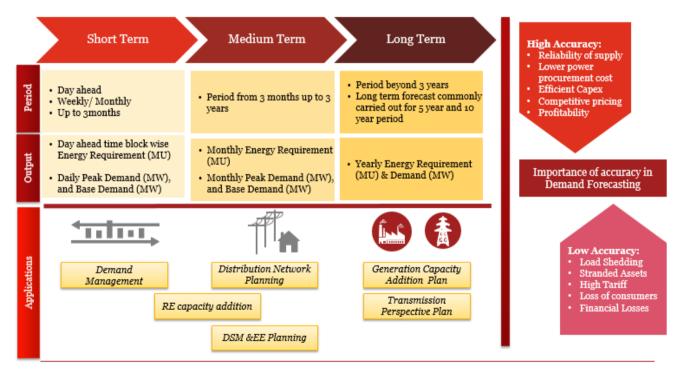
Table 26: Share of primary energy under two scenarios in 2022 and 2040

				nergy and	<u>, 110 300</u>			-0-+0	
Sources	2012		2022			2040			
(TWh)		As usual	% Share	Ambitious	% Share	As usual	% Share	Ambitious	% Share
Coal	3281	6021	50%	5529	49%	11320	50%	8433	44%
Oil	1936	3024	25%	2762	24%	6036	27%	4883	25%
Gas	570	1018	9%	1016	9%	1762	8%	1788	9%
Renewable & Clean energy	266	797	7%	823	7%	2010	9%	2602	13%

Others	1060	1108	9%	1152	10%	1351	6%	1626	8%
Total	7113	11968		11282		22479		19332	

The scenarios developed highlights the possible change in energy mix which may happen under current conditions and with more efforts i.e. the ambitious condition. In the shorter period upto 2022, the will be increase in share of coal from the current situation even if ambitious scenario were to take place. This is majorly to meet the increased electricity demand in the country. Post year 2022, if the share of renewables increase in the primary energy, then there is a possibility of coal share going down. The other energy sources namely Oil and Gas will hold their share in the fuel mix even with both the scenarios.

The projections and expected linkages highlighted in the sections above for various sectors are based on assumptions and scenarios. The scenarios being developed have been aggregated based on current demand supply situation, considering the various initiatives that the government has planned to implement and with some foresight into how the sector might evolve into the future. The reports available in the public domain published by Government and other agencies over time have projected the energy requirements of the country. However, with time, the assumptions change and scenarios have developed while maintaining with the stance that from the demand side there will be growth in the primary energy and electricity consumption in the country.


On the supply side, there is expected to be variation in the energy mix and share of energy from the primary fuel. World over, there has been a trend towards reduction of dependence on fossil fuels and move towards a regime where renewables have a greater share. However, India traditionally being dependent on fossil fuels will have tougher task at hand in reducing the share of fossil fuels. While recent efforts of initiatives towards renewable energy, energy efficiency and government commitments to the international forum for climate change has gained momentum, a lot is to be done in order to change the status quo.

4. Gaps in existing demand assessment and forecasting methodologies

Over the last half decade, the Indian power sector has witnessed a few success stories and has undergone dynamic changes. However, the road ahead is entailed with innumerable challenges that result from the existing gaps between what is planned and what the sector has been able to deliver. Demand forecasting of power, thus, has a significant role in trying to minimize these gaps.

The subject of forecasting has been in existence for decades. It involves accurate prediction of future power demand (magnitude as well as geographical location specific) over different planning horizon. Demand assessment is an essential prerequisite for planning of generation capacity addition and commensurate transmission and distribution system required to meet the future electricity requirement of various sectors of the economy. The type and location of power plants is largely dependent on the magnitude, spatial distribution as well as the variation of electricity demand during the day, seasons and on a yearly basis. Reliable planning of capacity addition for future is largely dependent on accurate assessment of future electricity demand.

Electricity demand forecasting is an essential exercise for every utility as it is forms the basis for the development and optimization of power portfolio across various term time horizons and for planning the network infrastructure to cater to the growth in demand as well as other requirements such as loss reduction and technology upgradation. While definitions of time horizons vary according to application and agency undertaking the forecast, broadly forecasting is undertaken in three time horizons viz. short term, medium term and long term. The following diagram provides a brief overview of the periodicity and application of electricity demand forecasting:

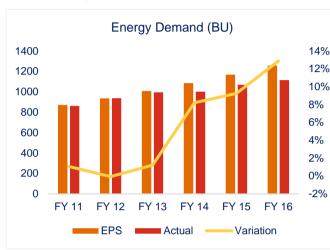
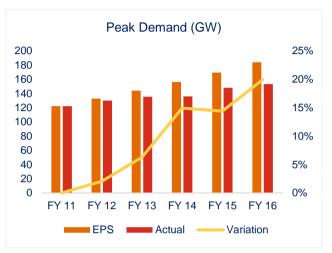


Figure 21: Periodicity and application of demand forecasting


Errors in forecasting can lead to bad planning which may be costly. Too high forecasts lead to more power plants and transmission resources than is required – high burden of cost of capital. While on the other hand, low

forecasts prevent optimum economic growth and may lead to the installation of many costly and expensive-torun generators (having short gestation period). These costs are ultimately borne by the consumers.

A glance at the projections made by the CEA in the 18th EPS for the 12th five-year plan viz. FY 2011-12 to FY 2016-17 indicate the year-on-year widening gap between forecast and actual. As indicated in the following figures, the variation between the projected demand and the actual demand has shown an increasing trend.

Source: 18th EPS; LGBR

As can be seen from above graphs, the variation between projected demand, as per EPS projections and the actual demand has been more than 20% overall.

The variation between what is projected and the actuals may be dependent on various factors like economic conditions, methodology adopted, forecasting technique used, data reliability, usage of growth and other input factors etc. Hence, going forward, there is a need to review and identify the same.

The details of the gaps identified are structured into three sections. First, the gaps are identified for the methodologies that are commonly used to forecast power demand in India. Second, gaps due to economic conditions have been shown and finally specific gaps pertaining to methodologies employed in draft NEP 2016, 19th EPS and draft Energy Policy 2017 are given.

4.1. General gaps identified based on review of commonly employed methodologies in India

Among the various methods that exist in the context of demand forecasting, three methods are most widely used in case of electricity demand forecasting in India. These are – trend or time series, econometric and partial end use method. The prevailing time horizons for demand forecasting are short term (upto 1 year), medium term (1 to 5 years) and long term (beyond 5 years) as per the requirements of the forecaster. The decision of selecting a forecasting technique and methodology to be adopted depends on a lot of factors, few being the extent of data availability, the applications of the forecasts, the accuracies intended and the level of effort one is willing to put.

Based on the review of the common methodologies and forecasting techniques used currently in India, the following section provides a list of gaps which have been identified:

• Granularity

The forecasts are majorly carried out at the Utility or State level. The granularity of the forecasts needs to be increased by conducting demand forecasting at district level or below (like divisional/sub divisional

level/ circle level) for better understanding of the behavior and trends and for higher accuracy of the results.

Non-availability of accurate data

The reliability of any methodology depends on the availability and accuracy of data on parameters. Availability of data is the biggest hindering factor for carrying out the forecasts. Few of the issues with data are:

- o Data is not at all available
- o There is no process in place for data collection
- o Data is not accessible
- o Data is available but not in any standard formats thereby has limited usage
- Available data is unreliable
- o Collected data requires extensive validation checks

With unavailability of required data, the methodologies developed are based on assumptions.

• Improper assessment of parameters

The projections rely to a great extent on the estimations and assumptions of certain parameters. Sometime the assumptions are not based on proper assessment of data but on unrealistic targets. The use of such assumed parameters greatly affect the demand that is forecasted. The assumptions considered for losses like T&D play a major role in estimating the energy required and should be considered based on realistic basis rather than considering the targets.

• Specific trends

The traditional forecasting methods such as time series and trend analysis may not take into account the trends that are emerging or specific trends that may affect a particular category as such.

E.g. Addition of a single consumer in the Industrial category will have larger impact on the demand trends when compared to a similar change in domestic category. The same may not be captured by a historical growth trend. Hence bulk loads may have to be added. The effect of the changes in demand due to schemes like PFA, improvement in power supply, energy efficiency and self-generation etc. may not be captured by conventional techniques alone.

Lack of sensitivity

There is a lack of sensitivity of the commonly used load forecasting techniques towards changes in weather parameters, customer mix, characteristics of an area, GDP growth etc. The techniques used mostly provide straight line and point results.

Assumptions about factors

Forecasting is undertaken for a long term based on assumptions and assumptions change within the forecasted period. The results of econometrical models rely on the assumptions and forecast of independent variables. The higher the assumptions in a forecast, the higher the chances of variation with the actual result.

Scenario models

The forecasting methods should be able to take care of the assumptions made about different inputs. Different scenario models should be developed and analyzed to see how the forecast varies under different scenarios.

• Periodicity of forecasts

Currently demand forecasting is carried out after a period of 5 to 10 years. Over the period the assumptions undergo changes. The exercise needs to be undertaken at shorter time period e.g. yearly,

to take into account changes in the factors affecting demand. There should also be a periodic review of the forecasted demand and forecast should be updated periodically to maintain accuracy.

Non-reliability of inputs

Reliability of the inputs is paramount before using in any forecasting exercise for accurate modelling of the behavior of electricity demand. Most of the time, the data and input variables provided are not reliable which impacts the end result. Hence it is important that the data should be considered from reliable sources and validated.

Seasonality and periodicity for forecast

The seasonality factors are not taken into account through the methodologies that are commonly used. It is known that demand for electricity varies according to seasons. For example, the demand from the domestic sector generally peaks when its summer and subsides during monsoon. During monsoon, the power demand from the agricultural and domestic sector is lower while during summer and winter power demand is higher as it is used for cooling and heating purposes.

Non-assessment of unmet/ Latent Demand

It is pertinent to note that if the demand supply gap is only on account of shortage of power, then increased availability of power to that extent should eliminate the gap or shortage. However, it has also been noted that there are scheduled and un-scheduled power cuts imposed by the Utilities on their consumers not necessarily due to non-availability of adequate power but due to transmission & distribution constraints, and poor financial health of utilities/DISCOMs making it difficult for them to purchase power from available resources. The energy and peak deficit does not include unconnected consumers. In the bid to supply reliable and quality power for each household, it is imperative to take into consideration the latent demand assuming every person has to be provided at least fair minimum amount of electricity. During forecast of demand, with improvement in economic conditions, the specific consumption in future may not be captured by the historical growth rates. Hence, emphasis should be laid on assessment of the same. The Standing Committee on Energy (2014-15) of the 16th Lok Sabha had also recommended the Ministry of Power to issue necessary directions to the Central Electricity Authority (CEA), for assessing latent demands of electricity in the country.

Non-linear relationships

Most of the commonly used techniques don't incorporate non-linear relationships that may exist between the dependent and independent variables. As many factors influence a demand and the impact of a factor may vary over time, it is important that non-liner relationships are modelled. Such modelling will require use of advanced methodologies and techniques. For example, temperature levels may affect energy demand in a non-linear way. This non-linearity may also be due to geographical differences or seasonal variations.

Inability to forecasting impact of new technologies

The forecasting of the future impact of new technologies is a challenge and hence assumptions and scenarios are built. The inability is also due to unavailability of specific data. Hence, assumptions are built into the models to take into account which increases the uncertainty of the forecast.

Combination of methods

No single method will provide an accurate forecast. Hence methodologies should be developed by combining forecasting techniques with other inputs derived based on assumptions and experience. E.g. CEA uses time series along with end use method to forecast power demand. Various techniques can be applied and compared in order to minimize errors and to get reliable forecasts.

Use of advanced methodologies

The methodologies used commonly are not advanced and cannot incorporate behavior of several factors. Also with large datasets, considerable time is required to prepare the data sets for using in conventional methods. However, as the complexity increases a shift towards advanced techniques and hybrid models will be required to arrive at more reliable forecasts. Few of the techniques which are used currently are:

- Artificial neural networks are computational methods that are non-parametric, non-linear, multivariate and self-adaptive. These methods are gaining popularity due to their reliable predictions. These methods can be applied when there are huge data sets and relations between the variables are difficult to predict.
- Majority of the load forecasting techniques are based on point forecasting where a single expected output variable is predicted. But with the changes expected in the demand-supply scenario, electricity demand is more active and less predictable. As such, probabilistic load forecasting can be quite useful. Such models can provide additional information on the variability and uncertainty of future load estimates by providing a range of forecasts. Also due to the drawbacks existing in the conventional methods (like lack of inclusion of seasonality elements) reliable forecasts are not easily available in load forecasting practice. Use of probabilistic models provides a range of forecasts with varying probabilities to get an idea of the possible future load demands
- In hybrid models, two or more advanced techniques can also be combined for forecasting. Such hybridization could turn out to be very effective in case of load forecasting as different methods possess different advantages in solving non-linear problems. A hybridization of these two techniques can be used to incorporate the advantages of the two techniques and balance the deficiencies of each technique and the combined approach delivers better reliable forecast.

4.2. Gaps in forecast due to impact of economic factors

Economic factors impact the demand of electricity in a country. Hence during demand forecasting, the economic factors are reviewed and analyzed to ascertain its impact not only on the current demand but also on the forecasted demand. The development of a forecast is dependent on the type of economic condition which has been expected from now, to that period.

The gap in forecast occurs when there is a variation between the forecasted and actual economic condition. Considering the example of 18th EPS which was published in December 2011, the projections were developed based on the prevailing economic conditions at that time and with a view that demand will increase at a sustained rate over the years. However, the actual growth of electrical energy requirement and peak electricity demand was less as compared to the projections. The variation in the years in the shorter term was ~ 1% between the forecast and the actual. However, over the period, the difference increased and there was greater variation towards the terminal years.

Year	18 th EPS projections Actual Energy		Difference	18 th EPS	Actual CAGR (%)
i cai	(MU)	requirement (MU)	(%)	CAGR (%)	
2010-11	870,831	861,591	(1.06%)	-	-
2011-12	936,589	937,199	0.07%	7.55%	8.78%
2012-13	1007,694	995,557	(1.20%)	7.59%	6.23%
2013-14	1084,610	1002,257	(7.59%)	7.63%	0.67%

The table below provides a comparison between the 18th EPS projections and the actual demand:

2014-15	1167,731	1068,943	(8.46%)	7.66%	6.65%
2015-16	1257,589	1114,408	(11.39%)	7.70%	4.25%
2016-17	1354,874			7.74%	
2021-22	1904,861	-	-	-	-
2026-27	2710,058	-	-	-	-

It is worthwhile to analyze the probable causes which may have led to a difference between the forecasted and the actual values.

4.2.1. Overall economic scenario during the period when 18th EPS was prepared

CEA had initiated the study for 18th EPS in August 2010 and the final report was published in December 2011. The year FY 2009-10 was considered as the base year of the forecast. All the forecasts for 18th EPS were developed based on the economic scenario that was prevalent during that period and with the assumption that same shall continue in the forecast period.

CEA had finalized the forecasts for the 18th EPS with the following major assumption:

- National GDP was assumed to grow at an average rate of 8 -10% till the end of 12th plan period (FY 2016-17) and around 7 9% beyond that period
- All the other assumptions for the forecast were developed as per the prevailing economic conditions of the year FY 2009-10 and FY 2010-11.

The assumption considered at that point in time may have been valid on the economic front. At the beginning of the year FY 2009-10, the GDP growth was forecasted at 7.4%. Subsequently the same was revised to 8% on account of improved performance from manufacturing and services sector. According to the 'Quick estimates of national income, consumption expenditure, saving and capital formation for 2009-10' released in the year 2011 by the Central Statistical Organization (CSO), the higher GDP growth rate during 2009-10 was achieved due to high growth in manufacturing (8.8 %), financing, insurance, real estate as well as business services (9.2 %), transport, storage and communication (15%), community, social and personal services (11.8%).

The economy continued its growth in the FY 2010-11 and the GDP registered a growth of 8.4%. The major growth happened in the transport, storage and communication sector (14.7%) followed by financing, insurance, real estate & business services (10.4%), trade, hotels & restaurants (9.0%) and construction (8.0%). The growth of secondary sector was 7.2% and that of service sector at 9.3% during 2010-11.

In these two years, the major difference was the growth in the primary sector i.e. agriculture, forestry & fishing that showed a high growth of 7.0% during FY 2010-11 as against 1.0% during the year FY 2009-10.

In view of the actual high growth achieved in the economy, the assumptions considered were also influenced by it. The assumptions held true for the forecasts that were developed for the year FY 2011-12 and FY 2012-13 as the difference between the forecast and the actual values for energy requirement for the two years are only 0.07% and 1.20% respectively. However, for the year FY 2013-14, there was a wide variation between the forecasted CAGR of 7.63% against the actual of 0.67%. The slump in the growth rate in FY 2013-14 lead to increased deviation from the forecasted values.

In the subsequent section, the reasons for slowdown in the growth rate in the FY 2013-14 has been provided.

4.2.2. Reasons for slow demand growth in FY 2013-14

The year FY 2013-14 was marked by an overall slowdown of the economy due to domestic reasons like policy paralysis, high inflation rate, stagnation of projects and lower manufacturing outputs etc. A host of other global issues like high crude oil prices during that period also impacted in the overall slowdown of the economy in the year FY 2013-14.

The reasons for slow demand growth in FY 2013-14 are listed below:

- Downturn in the economic cycle: The slowdown in the year FY 2013-14 was primarily affected by the downturn in business cycles. After achieving very high growth rates of ~ 8% in the previous 2-3 years, there was an overall slowdown in the economy. India's GDP during FY 2013-14 was registered at 4.7%.
- Slowdown in the industrial segment: The major factor leading to slowdown was due to low growth in the industrial sector. The industrial segment grew with an average of 0.4% per annum and there was deceleration in major sectors like steel, automobile etc.
- **Mixed growth in infrastructure:** The infrastructure sector showed a mixed trend. Sectors like power, fertilizer, railways and civil aviation showed positive growth whereas sectors like coal, steel, cement, refinery, crude oil and natural gas production witnessed lower or negative growth.
- **Decline in share of Agriculture:** The share of agriculture in GDP also decreased from 15.2% in the 11th plan to 13. 9% for the year FY 2013-14 indicating a further slowdown in the agriculture sector and a shift toward non-agriculture activities.
- Slowdown in the services sector: India's growth was earlier attributed to the increase in share from services sector. However in the year FY 2013-14, the sector grew at 6.8%, lower than FY 2012-13. The sector recorded slow growth due to dismal performance primarily in trade, transport and storage segment.
- Decline in gross domestic savings (GDS): Gross domestic saving consists of savings of household sector, private corporate sector and public sector. It is expressed as a percentage of the GDP. Since FY 12, the trend has been declining and in the FY 2013-14, the GDS was lowest at 32.1% and it again increased in the next year. Since GDS is expressed as a percentage of GDP, with lower GDP growth, the net decrease has been substantial.
- **Decline in consumer durables segment:** The segment decreased by 12.2% during FY2013-14 against a growth of 2% achieved in the previous years. This was primarily due to high inflation and interest rates which were prevalent during that time. Overall the demand for items in consumer segment was low.
- Continued high inflation affected consumer spending: In FY2013-14, the average WPI was around 6% but across specific commodity groups which directly affect the consumer spending, the inflation was still higher. Average quarterly inflation rate was 9.43% for food items and 10.14% for fuel and power. The overall CPI was around 9.49% in FY 2013-14. The high inflation rate coupled with higher interest rates affected the liquidity and spending power of the consumers.

The above mentioned economic factors have impacted the demand growth of electrical energy. Since, there is no conclusive evidence to establish the extent of impact of each and how much each economic factor has played a role in, the analysis is conjectural.

The next section deals with the specific gaps which have been identified on the methodologies employed in forecasts by CEA.

4.3. Specific gaps on methodologies employed in forecasts by CEA

4.3.1. Draft National Electricity Plan, 2016

The draft NEP released in December 2016 provides the power demand projections at an all India level developed using two methodologies

- One using historical growth rates
- Using regression technique

During the release of the Draft NEP 2016, the 19th EPS was under draft stage. Hence for undertaking generation and transmission expansion planning studies, demand projections were developed.

The table below highlights the gaps identified:

Particular	Methodology adopted	Gap
State/UT as the base level for forecast	The draft NEP 2016 considered the overall historical consumption of each state/UT and derived the overall growth factor.	 The consumption at a lower level e.g. circle/ district and category wise in a State was not considered.
Growth rate	The growth has been considered based on historical data for three periods and the rate with the least standard deviations was considered. The growth rate was fine-tuned after considering the actual growth during FY 2014-15 and FY 2015-16. Subsequently, based on the growth rate adopted, the forecast for each State/UT were developed.	 In a developing country, the future growth trajectory may not be consistent year on year as it is dependent on the several factors like economic performance, government policies & programs and the extent of successful implementation thereof etc. Hence, consideration of a single growth rate to forecast may not always provide an accurate forecast. Though historically, multiple growth rates were looked into, during the forecast, scenarios of growths have not been developed. The growth rates of shorter terms are ideally given more weightages so that effect in the nearer term are captured in the forecast. Category wise growth rate was not considered even though the demand and growth of each category is different.
T&D Loss	Overall T&D loss of the state was considered to arrive at the total energy required for the state. The actual T&D losses for the year FY 2013-14 has been taken as the base and thereafter the T&D losses were assumed to reduce during the period FY2014-15 to 2026- 27.	 The draft NEP has not mentioned the percentage reduction considered and the methodology adopted to arrive at the decreasing trend. The actual historical T&D loss values for the state could have provided a trend for a reduction in last five years. The actual data of FY 2014-15 & FY 2015-16 was not considered.
Effect of PFA in the demand	The draft NEP mentions that the effect of increase in electricity consumption on	 Detailed methodologies and assumptions not given.

	account of PFA has been suitably incorporated.	 Owing to non-availability of reliable data, method of estimation for future will be assumption based on policy targets.
Effect of DSM, EE and Conservation Measures in the forecast	The effect of the various measures were considered in energy and peak demand at all India level but detailed methodology is not provided.	 The effect of moderation, methodology adopted and assumptions undertaken were not highlighted. Data availability is a concern for such estimations. Data for total savings for the state will have to be derived based on assumptions. State specific savings in energy and peak demand were not highlighted in the forecast. This would have enabled better overall planning of network infrastructure.
Base year of forecast	FY 2013-14 has been considered as the base year.	• The reason for non-consideration of FY 2015-16 as base year may be due to non-availability of data from the states.
Load Factor	All India load factor for FY 2013-14 was considered to arrive at the all India peak.	 State specific load factors not considered to arrive at the peak.
Regression analysis to forecast at an all India level	The forecast of electrical energy consumption on all-India level was also worked out using regression technique with dependent variable as energy consumption and independent variables as 3 rd and 4 th degree time variables.	 Other independent variables like Population, GDP, Per Capita Income, WPI, CPI and other macro/micro economic factors not considered to derive the regression equation. The Regression method was also not carried out at the state level using state specific independent variables. Measures like PFA, DSM, EE etc. are not considered to refine the forecast developed using Regression method.
Captive power generation	The methodology assumes that there will be a gradual transfer of energy consumption by industries from captive power to utility grid due to improvement in grid supply, thereby increasing the overall demand in the grid.	 The assumption is not backed by state specific data. The correction in demand was not carried out considering the situation at individual states/UTs.
Roof Top solar	Contribution of roof-top solar installation towards reduction in electrical energy requirement and peak demand has not been considered.	• The Govt. has set a target of 40GW for roof top solar program by the year 2022. The installation would affect the energy demand initially due to self-generation and usage and subsequently with storage, the peak demand will also be reduced to some extent. However the effect was not considered.
Effect of penetration of Electric Vehicles and storage devices	Not mentioned	 Impact of the expected demand from EV and role of storage not considered in the forecasts.

Base line correction of data	Not mentioned	 The draft NEP doesn't clearly state the nature of historical data considered for the state. The energy consumption data from a state utility is mostly a restricted demand and a correction of the baseline data should be carried out before forecasting. Methodology for correction of baseline data for loss due to supply in unmetered categories, theft etc. are not mentioned. The forecast doesn't highlight how with up-lift of economic conditions, living standards and infrastructure development, the latent demand will be captured.
Scenarios considered for Renewable installed capacity	Three scenarios were considered upto 2022 i.e. 125GW, 150 GW and 175 GW.	 The scenarios considered are not based on historical installed capacity or growth but based on top down assumptions.
Effect of bulk loads in the forecast of States/UT	Not mentioned	 The effect of bulk loads on the power demand has not been mentioned. The expected bulk load addition based on Master/ Development plans of States are not included.

4.3.2. 19th Electric Power Survey, 2017

The Volume-I of 19th EPS forecasts the energy and peak demand for the period FY 2016-17 to FY 2026-27 for each category of each utility and state and subsequently aggregated to arrive at the regional and for all India level. The report also provides the forecast for terminal years of FY 2030-31 and FY 2036-37. CEA has used the PEUM methodology in Volume - I of the forecast and will release the forecasts using Econometric method subsequently. In comparison to the 18th EPS wherein the base level for data and forecast was the State/UT, in 19th EPS the forecasts have been developed at the Utility level.

The table below highlights the potential gaps in the methodology adopted by CEA for 19th E	PS:

Particular	Methodology adopted	Gap
Distribution utility as the base level for forecast	The 19 th EPS has considered the overall historical consumption of each Utility in the State/UTs and derived the overall growth factor for each category.	 The consumption at a lower level e.g. circle/ district was not considered for the bottom-up approach.
Base data considered for forecast	The forecasts is based on the data provided by the DISCOMs for the state. Details of correction of baseline data (if any) is not mentioned.	 The data available from DISCOM is a restricted data. Demand restricted due to outages (planned/unplanned), feeder interruption, losses due to thefts etc. should be considered to arrive at the unrestricted base data. The methodology for baseline correction is not clearly highlighted. The major gap is the non-availability of data at feeder/ circle level for the outages and if available, it is not in the standard data required format for usage. Reliability of data available is a major concern.
Periodicity of data	Annual electricity data from various utilities considered to derive forecast.	 Seasonal effects and trends of demand is not considered. The reason may be due to non- availability of month wise data at category levels from all states.
T&D Loss	The losses for each DISCOM has been considered as per the trajectory of loss reduction by respective DISCOMs	 The loss trajectory should be based on realistic estimates from actual loss data conducted through studies/ audit and not based on top down targets. Most DISCOM are not able to segregate commercial losses from the T&D losses. Determining the actual loss of a DISCOM is a data intensive and is mostly constrained by availability of reliable data at Sub-Division/ Circle level.
AT&C Loss	The AT&C loss reduction as agreed to by the states who have participated in the UDAY scheme of GoI has been considered in the 19 th EPS.	 The actual loss figures should be considered rather than agreed targets as historically there has been variations. Reliability of the figures quoted as actual loss might be a concern.

Load and diversity factors	Suitable assumptions considered	 The non-availability of data hinders the determination of actual load factor for categories. Hence assumption based approach is considered.
DSM, Energy Conservation, Efficiency improvement programs, Roof Top solar programme	These initiatives have been factored in the electricity demand forecast exercise	 Availability of data to measure efficiency gains and units saved is a concern. Future estimations and trajectories are assumption based and subject to variation. Scenarios for efficiency gains not developed.
PFA/ Make in India	Initiatives would lead to growth in demand. However no methodology has been specified.	 The estimations would be assumption based and won't be reliant on historical trends.
Electric Vehicles	Suitable growth rate has been taken into account in the demand forecast. Considering optimistic scenario, if all vehicles as per target are used, an energy of 10-12 BU will be required additionally at all India level. The batteries will charge during day time using solar generation and during off peak hours at night. So appreciable demand is not anticipated.	 Estimation is assumption based. The acceptance and penetration of EVs in future will be dependent on policy push and initiatives initially. Scenarios for the impact on demand not developed.
End Use Method	End-use demand is affected not only by the cost of energy but also by other factors such as climatic conditions, affordability and income of the consumers, preference for end use service etc. Similarly, demand for end- use appliances depends on the relative prices of the appliances, cost of operation, availability of appliances, etc. Projection of electrical energy requirement for lift irrigation schemes, railway traction and HT industries has been done by end use method.	 End use impact for other categories was not considered. Bulk load addition for domestic, commercial, PWW categories etc. also not considered. Growth rates based on only time as a dependent variable may not capture the effect of other factors like demand due to urbanization, impact of master/ development plans/ Smart cities etc. The data for expected load in future and year of commissioning of bulk loads are also not available publicly or are uncertain.

4.4. IESS 2047 – analysis of the gap between demand and supply projections

NITI Aayog has developed the India Energy Security Scenarios (IESS), 2047 as an energy scenario development tool. The guiding principle behind the development is to model the likely energy pathways that might happen in the future and provide options to the user to customize and check the likely future scenarios.

The tool has been designed to develop scenarios between seven demand sectors and ten supply sources. Four default pathways of likely energy scenarios have been pre-defined in the model. However the user has the option of customizing the supply and demand sectors to develop unique scenarios.

In the IESS 2047, it has been highlighted that it is not a forecasting tool but its usage is for scenario development. The model does take into account the known/ estimated energy resources potential of the country nor does it factor in pessimistic/optimistic outlooks on policy, costs, economic growth and other assumptions. The data highlighted are also indicative and not firm estimates.

Considering the above, the tool at best generates scenarios and provides a framework to balance the energy numbers arising out of various combinations of demand and supply choices.

After incorporation of the demand and supply choices, the results in the form of energy demand and energy supply required for a particular year are shown in the tool. What is observed after freezing such a scenario is that, there is a mismatch between the energy demand and energy supply.

Broadly, the observed gap may be due to the following reasons given below. The reasons given are based on a high level assessment that was carried out on the IESS2047 tool.

Varied conversion efficiency of the primary energy source

The extent of mismatch between supply and demand may be due to conversion efficiency of the primary energy source selected by the user.

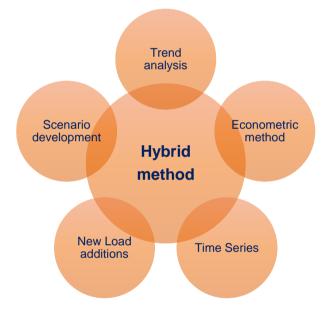
For e.g. for a particular demand, depending on the type of scenario selected, the share of a particular supply source will be different in aggressive effort scenario than in case of a least effort scenario. In the least effort scenario, the demand will be met more from coal while in case of aggressive scenario, solar might have a greater share in meeting the same demand. Since coal and solar have different energy conversion efficiencies, to meet the same demand, the supply required will also vary depending on the type of fuel chosen which is again controlled by the scenario selected.

In the energy flow diagram, the same is captured under the head 'losses'.

Energy lost due to T&D losses

During energy flow from supply to demand, there will be some amount of losses due to transmission or distribution of energy. These are inherent losses which occur at every step until the energy reaches the demand side.

In the energy flow diagram, the same is captured under the head 'T&D losses'. The year wise T&D loss numbers are provided in the excel model, however no details have been provided for the basis of the trajectory assumptions considered.


5. Proposed alternate approach and methodology

5.1. Proposed hybrid method

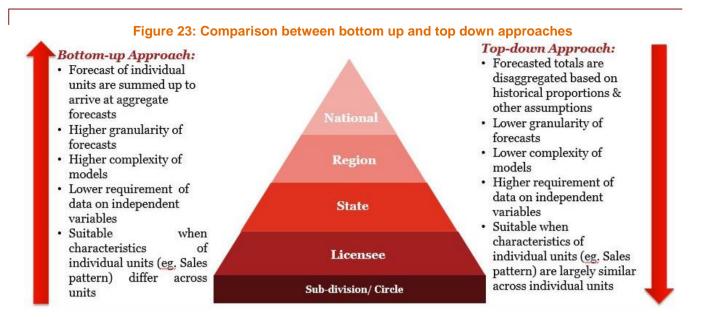
The review of the existing methodologies highlighted that there are inherent gaps in existing methodologies which needs to be addressed. Broadly, the gaps can be classified under the following:

- Gaps in the approach and methodology
- Gaps due to non-availability and unreliability of data
- Gaps on assessment of input factors considered
- Gaps in forecasting techniques used

In order to address the identified gaps and considering the anticipated impact of new influencers on the demand in future, a hybrid method will be required which will involve use of a number of methods.

Every method has its merits and demerits. Every method is dependent upon a set of input variables. Application of a single method for predicting demand is not possible for every consumer category (data limitations, use of too many assumptions etc.) as nature of every consumer category is different and with new influencers impacting the categories differently, the behavior will also be different. Thus for demand forecasting in the present study, hybrid method will be used wherein the available data is compiled and then on the basis of its availability, decision on use of method will be undertaken.

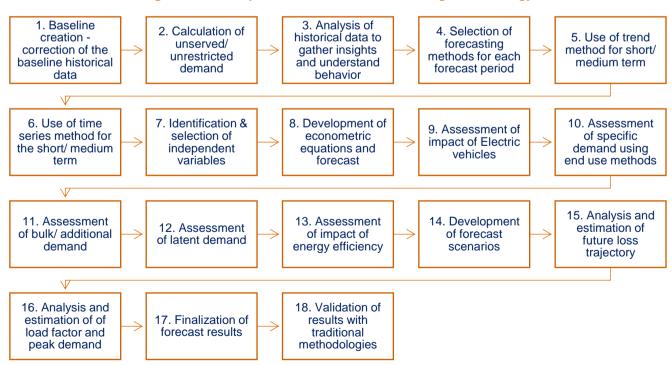
The hybrid method will also rely on scenario development wherein forecasts using different methods will also be developed considering probable future scenarios. This will ensure mapping of uncertainties and will result in a range of forecast.


In spite of the use of hybrid method, there may still be challenges in addressing some of the gaps e.g. pertaining to non-availability and unreliability of data. Such gaps will have to be addressed in the approach by considering suitable assumptions.

The use of category specific forecasting method will also require that the approach to forecasting is also looked into differently. To meet the objectives of the study and to develop an alternate methodology, a bottom up approach will be more favorable.

5.2. Use of bottom up approach

Overall, the approaches to forecasting can be broadly categorized into bottom up and top down. In a bottom up approach, forecast of individual units are summed up to arrive at the aggregate level forecast whereas in a top down, forecast is disaggregated based on proportions and assumptions.


The following graphic highlights a comparison between the bottom up and top down approach to forecasting.

While both the approaches should be tested in order to derive the best results. However, considering the requirements of the study, overall a bottom up approach shall be followed for undertaking the electricity demand forecasting. To achieve higher granularity of forecasts, bottom up approach is the preferred approach in the present context. It is proposed to undertake the forecast at the circle level of utility and then aggregate it up to the higher level. The idea is to analyze the trends at the lower level so that better forecasting accuracy is achieved. However, there is a risk of non-availability of requisite data and available data may not be reliable.

5.2.1. Proposed 18-step alternate methodology

The following figure summarizes the 18-step alternate methodology of electricity demand forecasting for the present study.

Figure 24: 18 Step alternate demand forecasting methodology

Step 1:

Correction of the baseline historical data

In the past, DISCOMs have been supplying power for restricted demand conditions and managing the extra power requirements though load curtailments etc. But going forward, the aim is to supply uninterrupted power. DISCOMs are expected to serve 24x7 supply (unrestricted supply) to its consumers (except for some category of consumers including agriculture etc.).

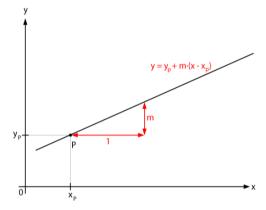
In India, many states have surplus status viz. supply/ availability outweighs the demand, however in many places there are interruptions due to planned load shedding, unplanned outages and due to failure of distribution infrastructure.

Thus, the forecasts should be based on a baseline data which is at the same wavelength as expected future data i.e. using unrestricted baseline data for predicting our future unrestricted demand. The same will also ensure that the historical demand data which is used for projecting the future demand is at the same base i.e. 24 hours supply. The usage of correct base will ensure precision in forecasts.

The proposed methodology takes into account the development of unrestricted demand data for all consumer categories using bottom-up approach.

In the proposed approach, the supply hours will be considered as per the data available from sample feeders to be shared by the DISCOMs. The data will be extracted from feeder meters and then supply hours for normal and block supply will be analyzed to ascertain the current condition of supply. The basic premise for this method lies in estimating the energy units to be supplied in non-supply hours using actual data available for supplied units in supply hours using straight-line method.

The curtailed energy for a certain category of consumer is estimated using:


- Average hours of supply = $[Y_1]$
- Average hours of supply = [Y₁]
 Average per day actual restricted supply units = [X₁]
- Average daily un-restricted supply units $[X_2] = [(24 Y_1) * (X_1 / Y_1)] + X_1$

Accordingly, the unrestricted supply units for a region and for each category will be determined.

Step 2:

Calculation of unserved demand and determination of unrestricted demand from baseline correction The unserved / unrestricted demand can be assessed using the supply hour data available from sample feeders. Due to various factors like load shedding, transformer failure and 33/11 kV feeder breakdown etc., there is interruption in the power supply and is recorded by feeders. During the time of power interruption, the demand is unserved. The supply hour data from sample feeders will provide an indication of the quantum of unserved demand and can be used to ascertain the unrestricted demand. Individual data for each type of failure is not available and mostly feeder interruption counts are specified. However, additional impact may be captured using suitable adjustment factors. Once unserved units due to various responsible factors is assessed, the same will be added up to the served units to get the unrestricted sales units.

Step 3:

Analysis of historical data – category wise to gather insights and understand behavior

Step 4:

Selection of forecasting methods for each forecast period

The foremost step before using any method is to analyze the historical data. Understanding the dynamics of sales mix and behavior of LT and HT in future is very important. The same impacts the load factor, profile, and also average & peak demand of system. This factor is impacted with the migration/ growth of industries or LT consumers including residential & commercial etc.

The analysis of the data also gives a guidance of the type of forecasting method that can be used.

There are a number of forecasting methods (Econometric, Time series, Trend analysis etc.) through which electricity demand can be forecasted. For forecasting demand under various time horizons (short, medium and long), combination of methods will be used for different forecast periods. Every method has its merits and demerits. Every method is dependent upon a set of input variables. The selection of the method would depend upon various factors like availability of required data set, practical feasibility of the results obtained from different methods, evaluation of the results obtained through goodness of curve fit, stakeholder consultation etc.

In the present study, we propose to use the following four methods.

Trend method	Time series method
for short/ medium term	for short/ medium term
Econometric method	End use method
for short, medium & long	for short, medium & long
term	term

Step 5:

Use of trend method to develop short/ medium term forecast Post the analysis of the historical data, growth rates (year on year growth and CAGR growth) will be calculated on the baseline corrected data of energy consumption, consumer data etc. and analyzed. The process will be carried out for each consumer category and will be repeated for all the regions. The growth rates will provide a fair estimation of the trends of each category and region. Post review of the rates, trend method will be applied for each category of consumer. The application of trend method for specific categories may vary and different approaches as per requirement will be developed. The model for trend method will also have factors to incorporate effect of energy efficiency, effect of technology advancement, latent demand etc. It is also planned to use different CAGR rates for short, medium and long term.

Step 6:

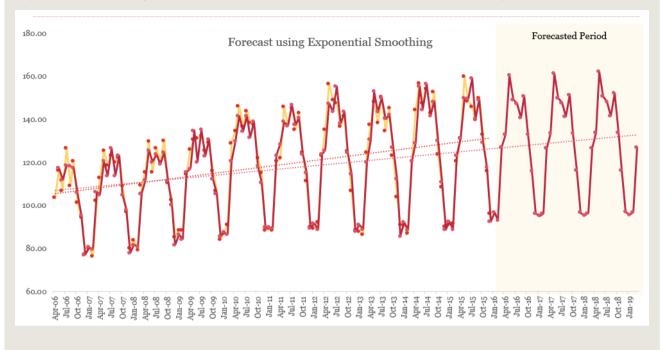

Use of time series method for short/ medium term The time series method will also be used to develop forecast for the short and medium term with the baseline corrected energy demand data. For a better accuracy, the method which considers trend and seasonality will be employed. A case study highlights the experience of using the time series method in electricity demand forecasting.

Figure 26: Case study: Time series method

Use of time series forecasting technique to develop short term forecast for a private utility in India

In one of the recent assignments for a private utility, exponential smoothing technique was used to derive monthly forecasts for the short term horizon. The graphic shows an illustration of the forecast results.

In the assignment, monthly sales data was used for previous ten years and the forecast was developed using exponential smoothing technique. The results obtained for the short term were fairly accurate.

Step 7:

Identification & selection of independent variables

For undertaking the forecast using econometric method, identification of independent variables in a crucial step. In the identification stage, a large number of variables are looked into and tested. Following is a tentative list of the independent variables which will be considered.

Table 28: Tentative list of independent variables

Independent Variables – Tentative list (subject to data availability)						
Temperature	Population					
Humidity	GDP or GSDP – Primary					
Rainfall	GDP or GSDP – Secondary					
Consumer Price Index (CPI)	GDP or GSDP – Tertiary					
Wholesale Price Index (WPI)	Per capita income					
Rate of Inflation	Electricity tariff					
Number of Consumers	Industry or Manufacturing indices					

From a macroeconomic consideration, all the parameters mentioned above will be assumed to influence electricity demand. For setting up the econometric model, an initial functional form will be formed with electricity demand as the dependent variable and all other parameters mentioned above as independent variables. The correlations will be calculated for all consumer categories. Then regression analysis will be conducted on the software - Statistical Package for Social Sciences (SPSS) to determine the co-efficient of the independent variables and test for significance of these variables. The variables which will have a significance in the 95% confidence level will be chosen and the rest of the insignificant variables will be dropped from the set of variables. Only those variables, wherein, the p - value and t-stat are significant will be considered for developing the equations. For significance, p-value should be less than 0.05. Post the selection of the variables, the regression equations will be developed with the significant variables and initial functional form to derive the final coefficients.

Step 8:

Development of econometric equations and forecast After selection of the independent variables for each category, the final econometric equations will be developed. As the regression equation is a function of various independent variables, the dependent variable can be established only if values of all independent variables are known. Hence to estimate the future value of the dependent variable, the forecast of independent variables are worked out using various approaches. Subsequently, electricity demand forecast is worked out. The values obtained for each category is aggregated to arrive at aggregate level forecasts.

Figure 27: Case study: use of econometric forecasting technique

Use of econometric forecasting technique to determine electricity demand for a state utility in India

In one of the assignments for a state utility, econometric forecasting was used to derive forecasts for a period of ten years. The graphic shows an illustration of relationships developed for each customer category for a particular region in the state.

Category	Domestic	Non Domestic	LT Industry	LT PWW	LT STLT	Irrigation Pumps *	Railway Traction	HT Industrial	Coal Mines	Others*
Significant Variables	Ι	G	Ι	Ι	G		G	G	NA	
Status										
Selected	I	G	I	I	G	Time Trend	G	G		Time Trend

The significant variables obtained were carefully analyzed statistically and then final variables are selected. The regression equations were developed post finalization of the significant variables.

Categories	Equations
Domestic	Y = 42758.35*(Income) + (-493495989.34)
Non Domestic	Y = 0.0052*(GDP) + (-59264841.73)
LT Industry	Y = 5317.50*(Income) + (-44339961.57)
LT PWW	Y = 1302.46*(Income) + (-13515978.92)
LT STLT	Y = 0.000566*(GDP) + (-5045585.41)
Irrigation Pumps	
Railway Traction	Y = 0.00279*(GDP) + (-478724.64)
HT Industrial	Y = 0.0174108*(GDP) + (-210311994.99)
Coal Mines	

Step 9:	The Government has set an ambitious target for an all-electric vehicle econo
Assessment of demand from electric vehicles	in the country by 2030. The push for same started initially in the year 2013, wh NEMMP 2020 was launched to promote hybrid and electric vehicles in country. Subsequently FAME scheme was launched w.e.f 1 st April, 2015 w the objective to support hybrid/electric vehicles market development a manufacturing eco-system. The scheme has four focus areas i.e. technolo development, demand creation, pilot projects and charging infrastructure.
	The uptake of EVs will depend in large part on the adequate deployment electric vehicle supply equipment (EVSE) needed to recharge EVs. The syste are still under planning and estimations have to be developed for the additio power to be required to support these EVSEs. At present, there is no defir data for the number of charging infrastructure available in the selected state there a definite outlook of the same. Hence the estimations will be based scenarios and assumptions.
Step 10:	The end use method will be used to determine specific demand of cert
Assessment of specific demand using end use method	categories which cannot be captured from historical data or secondary resear. The approaches for end use method will vary depending on the target and rend result. E.g. for determination load from agriculture pumps, an end us method shall be used. The power demand for irrigation shall be worked out projecting the number of pumps in mid-year, the average capacity of each purand the average consumption per load or hours of operation with assumption. The demand for lift irrigation shall be based on the programme of development of lift irrigation schemes indicated Distribution utilities/ State Authorities.
	Open Access is another important factor which will be analyzed as it impatt the demand in all time horizons (short, medium and long). The parameter will assessed considering the present and forecasted open access consumers, the prevailing contracts and benefit analysis, likelihood of their returning back DISCOM system, regulated tariffs of DISCOM and expected increase in sar policy changes etc.
	Captive power generation is another aspect which will be looked into during a forecasting study. The industries have been using captive power units to me their power requirements in the past. However with stringent environmer norms, it is estimated that many captive power plants won't be able to meet requirements and will have to be shut down. The resultant demand is expect to progressively shift to the grid. Since data acquisition will be a challenge in t regard, the estimation will involve assumptions.
Step 11: Assessment of bulk/ additional demand	Impact of additional demand will also be incorporated at this stage post a development of the forecast to refine the results. Any additional load will added up to the demand arrived by the hybrid approach. The information such high loads shall be captured by consultations, primary and second research, review of infrastructure schemes, housing schemes and master pla etc. Depending on availability of the information on additional load, phasing be carried out and scenarios will also be developed for various factor wh

Figure 28: Illustration of using additional loads in forecast

Illustration of phasing of additional loads and scenario development

The graph below illustrates the forecasts of a private utility, developed for a ten year period considering different scenarios.

		OPTIMISTIC		REAL	STIC	PESSIMISTIC	
Sl. No.	Consumer Name	Year of Comm.	Load (100%)	Year of Comm.	Load (80%)	Year of Comm.	Load (60%)
1	Hotel	2017-18	5.5	2018-19	4.4	2019-20	3.3
2	Medical College	2017-18	13.0	2018-19	10.4	2019-20	7.8
3	Ideal Unique	2017-18	5.0	2018-19	4.0	2019-20	3.0
4	The 42 Residency	2018-19	5.0	2019-20	4.0	2020-21	3.0
5	Metro	2018-19	10.0	2019-20	10.0	2020-21	10.0
6	Railway	2016-17	20.0	2017-18	20.0	2018-19	20.0
7	ABC Industries	2016-17	3.0	2017-18	2.4	2018-19	1.8
8	South City Infrastructure	2016-17	2.5	2017-18	2.0	2018-19-20	1.5
9	Airport	2019-20	1.5	2020-21	1.5	2021-22	1.5
10	SSKM	2017-18 (half), 2018-19	15.0	2018-19 (half), 2019-20	12.0	2019-20-21	12.0
11	ESIC Hospital	2017-18	12.0	2018-19	9.6	2019-20	9.6
12	Riverside Real estate	Phased from FY 20 to FY 23	30.0	Phased from FY 20 to FY 23	20.0	Phased from FY 20 to FY 25	15.0

Step 12:

Assessment of latent demand

Development of reasonable estimates for the latent demand in the system is an essential pre-requisite to undertake an electricity demand forecast study as the trend of historical consumption of electricity may or may not be a reliable indicator of the future trend of electricity consumption. Latent demand is the desire to consume a product or service but due to various barriers, the desire is not met and the consumption is curtailed. In developing economies there are various factors which may limit electricity consumption. These can range from inadequate infrastructure such as network capacity constraints, negative effect of income, high cost of supply, outdated technology etc. Considering the case of a household with low income, consumption is based on priority of basic needs, thereby impacting demand of other goods e.g. electricity. For an industry, the electricity demand may be suppressed due to factors such as inadequate network infrastructure, insufficient power availability with distribution licensee to cater to the demand, high cost of supply, reliability of supply etc. To assess the latent demand, different approaches will be attempted. One planned approach will be using econometric method whereby the impact of latent demand due to economic conditions can be captured. In an econometric forecast, the factors will be checked for relationship with electricity demand. In case a strong relationship is found, the same shall be considered. Another method can rely on using suitable benchmarking of electricity consumption per consumer in other countries/ regions wherein with that of target region to see the deviation. Such methods will involve consideration of suitable assumptions. A more prudent method will be to conduct primary survey across consumer categories in a target region to understand the quantum of latent demand in the area and in categories. Such a study will also provide a good base for future studies to follow.

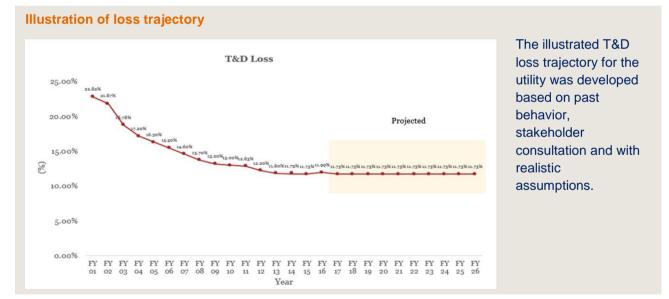
Step 13: Assessment of the impact of energy efficiency	As per The World Bank estimate, in India the residential end use appliances agriculture/irrigation pumps, and municipal infrastructure are the top three areas which will contribute to the energy efficiency potential. The Government has also launched several programme and schemes pertaining to promotion of energy efficiency in this regard. As the population grows and the demand for electricity rises, there will be increased opportunity for energy efficiency to make an impact. Same will be in the case of industries and buildings. Hence going ahead incorporation of the impact in the forecast is critical. It will also help in ascertaining the behavior change due to efficiency and to estimate any ne
	 savings if any. Research has suggested that the behavior of households are very different from what is expected while designing the policies. In order to capture the behavior and trend, multiple approaches have been proposed. A primary survey has been proposed for the assignment to collect relevant data. The survey will be designed to understand the impact and influence of energy efficiency in households. Depending on the results of the survey, suitable scenarios and assumptions shall be built and incorporated in the forecast. The assessment will also rely on secondary literature in order to consider the impact of energy efficiency.
Step 14: Development of forecast scenarios	The results may be forecasted using the best possible method and with a necessary information like proposed infrastructure plans, weather variables economic & demographic variables etc., but there is always a probability that the assumptions may not hold true. Hence, scenarios are developed to reduce the uncertainties.
	The forecast for the present study shall involve development of two scenarios
	 Forecast using baseline corrected data
	 Forecast after adjusting for the anticipated unserved demand in future
	The scenarios have been proposed considering the aim the study which was to undertake forecasts using baseline correction of historical data. The results of the forecast in each scenarios will enable comparison with the results of the existing methodologies wherein such baseline corrections are not undertaken.
	Figure 29: Illustration of forecast results
Illustration of forecasting	g results post development of scenarios
14000	
120000 Demand 100000	Pessimistic Realistic Optimistic Regression (Tota) Regression (Aggregated)

FY 07FY 08FY 09FY 10 FY 11 FY 12 FY 13 FY14 FY15 FY16 FY17 FY18 FY19 FY20 FY21 FY22 FY23 FY24 FY25 FY26 Year

8000

6000

Step 15:


Analysis and estimation of future loss trajectory

One of the gap identified in estimation of loss trajectory is that the trajectories are developed based on top down targets. Historically, it has been observed that the targets are not met as per the defined timelines and are also periodically revised. Due to which the overall forecasted results vary with that of the actual. Hence it would be more prudent to develop the future loss trajectories based on realistic estimates after analysis of the actual loss data.

The data pertaining to T&D losses may be available for a limited period and mostly at state level. Also, such data also won't have segregation of losses for specific activities like theft, faulty reading etc. Such information may be available only for select states wherein load flow studies have been carried out by the Utilities in the past. Load flow studies have been previously carried out in states of Orissa, Bihar and by some private utilities for their network. It helps in identifying the losses at various levels and utilities can take their network decisions based on the results of such reports. Before undertaking an exercise of load forecasting, the DISCOMs should also undertake load flow studies in their network on a periodic basis.

In the current assignment, the trajectory shall be developed based on in-depth analysis of available data, trends observed and realistic assumptions will be considered wherever required. Extensive stakeholder consultation shall be involved before finalization of the future loss trajectory.

The following case study highlights the development of a future loss trajectory for a private utility.

Figure 30: Case study: Illustration of a loss trajectory

Step 16:

Analysis and estimation of load factor and peak demand A detailed analysis will be carried out on historic load curves for the state depending on availability of data to observe the loading patterns for peak, average and base demand values. From this analysis, the expected load factors for the forecast years will be computed using the historical data of energy and demand. The load factor, defined as the ratio of the average load to the peak load will provide an estimate of the degree of loading prevalent for each consumer category. From the data, average load factors for each category will be calculated. After forecasting the unrestricted demand, the average load factor shall be used to determine the peak demand in the system.

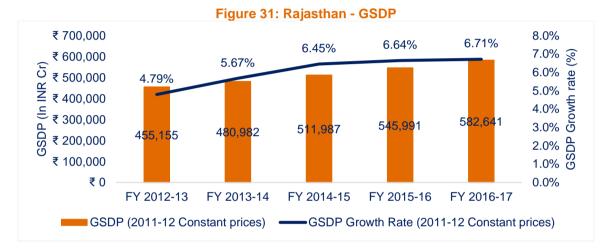
Step 17:

Finalization of forecast results

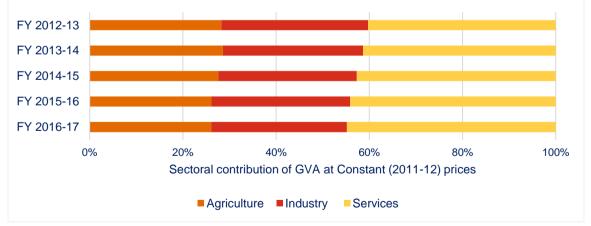
The results obtained from all the methods will be analyzed and compared. The exercise will be carried out category wise and post the analysis, the results from the best fit model will be identified and selected. In some categories, a particular method may not even produce the required forecast and will have to be dropped. The forecast finalization will also involve consideration of results from bulk load, specific demand, energy efficiency, latent demand etc. The finalization will be for two scenarios as defined in the previous step. Overall based on insights from historical data, after discussion with stakeholders and from experience of forecasting, suitable judgement will have to be applied.

Step 18:

Validation of results with traditional methodologies The final results will then be compared with available forecasts which have been developed using other traditional methodologies for the same period. The comparison will then be analyzed across common parameters and validated.


6. Approach adopted for selected state

6.1. Rajasthan - Profile


Rajasthan is India's largest state by area (342,239 square kilometers (132,139 sq. mi) or 10.4% of India's total area). Rajasthan is administratively divided into 7 divisions, 33 districts, comprising 295 panchayat samities, 9,894 village panchayats, and 43,264 inhabited villages.¹³

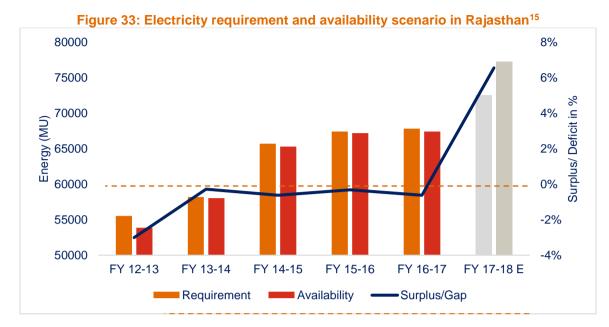
The state is primarily an agrarian state and ~75% of the state population (as per Census 2011) is rural population and rest is urban population. The main industries are mineral based, agriculture based, and textile based.

The GSDP growth rate of the state has been consistent over the last five years. The state is expected to figure amongst the growing states in India by capitalizing on the investor friendly policies launched by the state government, excellent connectivity, and natural resources and with availability of labor in the state.

Though the state has been primarily an agrarian economy and traditionally rich in mineral based industries, the trend of sectoral contribution highlights that the contribution of services sector has been increasing at the expense of industries and agriculture.

¹³ Government of Rajasthan, Economic Review 2016-17 including GSDP data

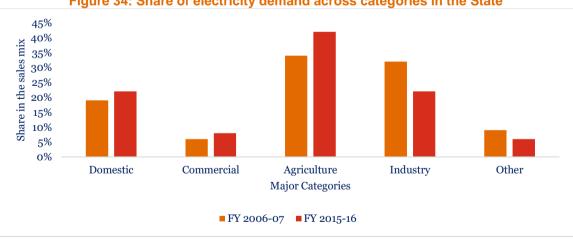
6.2. Power sector in the state


The State of Rajasthan has been amongst the forerunners in initiating various reforms in the power sector which can be gauged from the fact that the Government of Rajasthan brought about a slew of reforms in the late 90's and early 2000's culminating in implementation of Power Sector Reforms Program (2000). The reforms in the power sector aimed to facilitate and attract investments, bring about improvements in the efficiency of delivery system and create an environment for growth for the overall benefit of the people of the state.

As part of the Power Sector Reforms Program, the State Government decided to restructure the erstwhile Rajasthan State Electricity Board (RSEB) as a pre-cursor to unbundling on the functional lines. On March 21, 2000, Government of Rajasthan approved the provisional Financial Restructuring Plan (FRP) of the state power sector and a provisional transfer scheme drafted. On July 19, 2000, Government of Rajasthan accomplished the first major reform milestone of notifying "Rajasthan Power Sector Reforms Transfer Scheme 2000" and thereby restructuring its vertically integrated Electricity Board (RSEB) to form five (5) successor companies.

Function	Company	Objective		
Generation	Rajasthan Rajya Vidyut Utpadan Nigam Limited (RVUN)	Undertake the electricity generation business of erstwhile RSEB		
Transmission	Rajasthan Rajya Vidyut Prasaran Nigam Limited (RVPN)	Undertake the electricity transmission and bulk supply business of erstwhile RSEB. In addition, RVPN owns Rajasthan's capacity share in the shared power stations of BBMB, Chambal Complex and Satpura.		
Distribution	Jaipur Vidyut Vitran Nigam Limited (JVVNL)	Manage electricity distribution and retail supply business in Alwar, Bharatpur, Jaipur City, Jaipur District, Dausa, Kota, Jhalawar, and Sawaimadhopur Circles		
	Ajmer Vidyut Vitran Nigam Limited (AVVNL)	Manage electricity distribution and retail supply business in Banswara, Udaipur, Chittorgarh, Bhilwara, Ajmer, Nagaur, Sikar and Jhunjhunu Circles		
	Jodhpur Vidyut Vitran Nigam Limited (JdVVNL)	Manage electricity distribution and retail supply business in Sriganganagar, Hanumangarh, Churu, Bikaner, Barmer, Jodhpur City, Jodhpur District, and Pali Circles		

Table 29: Present structure of power sector utilities


As a result of comprehensive reforms, the power sector in the state of Rajasthan has made significant progress over the last decade in terms of increased generation capacity and strengthening of network infrastructure leading to an improved power supply position. Most consumers are already being provided 21-22 hours of average daily

supply¹⁴. The State is working towards connecting the remaining 20% households and provide 24X7 reliable supply to all consumers in the state.

The requirement of electricity has been growing consistently over the years, but owing to supply constraints there was deficit. Over the last 3-4 years, the deficit has narrowed down and the state is expected to be power surplus. However, localized supply restrictions due to network and other issues prevail.

In terms of sales mix, agriculture is the dominant category and the share has increased over the last ten years. Domestic and Commercial categories have shown marginal growth whereas demand from industries has decreased substantially in the state.

In the next 10-15 years, the demand in the state is expected to continue its growth trajectory due to the various initiatives undertaken by the Central and State Government like providing connection to the unconnected households, plan to provide 24x7 reliable power supply, strengthening of Transmission and Distribution network, metering and loss reduction plans etc. to cater to the expected growth in demand of existing as well as forthcoming consumers.

¹⁴ Rajasthan – Power For All document

¹⁵ LGBR – 2017-18 released by CEA

In the subsequent sections, the details of the implementation of the alternate demand forecasting methodology for the state of Rajasthan has been provided.

6.3. Use of a bottom up approach

6.3.1. Forecast at Circle level

As outlined in the alternate methodology which has been proposed for the current study, it was mentioned that bottom up methodology will be used. To achieve higher granularity of forecasts, it was proposed to undertake the forecast at the circle level of utility and then aggregate it up to the higher level. The idea is to analyze the trends at the lowest level so that better forecasting accuracy can be achieved.

In view of the above, data pertaining to monthly sales, consumers etc. were collected at the Circle level from the year FY 2006-07.

6.3.2. Consolidation of Circle level data

Rajasthan has three distribution utilities and many of the Circles have been carved out of existing bigger circles over the past ten years for better management and operational reasons. During the course of data collection at the Circle level, it was observed that data for many circles were not available since FY 2006-07 as many Circles were formed post that.

Hence it was decided to undertake consolidation of Circles within the same distribution utility. The consolidation of the Circles was carried out for the following reasons:

- To ensure that minimum of 10 years of historical data across consumer categories is available
- Historical data for new Circles was available for only 3-4 years prior to FY 2015-16
- There was sudden drop in sales and consumers in the original circles as new circles were carved out. This drop created inconsistency and would have impacted the forecast

In view of the above, the new Circles created post FY 2006-07 were added back to the original Circles so as to arrive at the original number of Circles as was available in the year FY 2006-07. The details are given in the following table:

Table 30: Consolidation of Circles for forecast								
SI. No.	Circles	Data availability since FY 2006-07	Circles kept for Forecast					
	JVVNL							
1.	Alwar	Yes	Yes					
2.	Bharatpur	Yes	Yes					
3.	Dausa	Yes	Yes					
4.	Jaipur city circle	Yes	Yes					
5.	Jaipur district circle	Yes	Yes					
6.	Jhalawar	Yes	Yes					
7.	Kota	Yes	Yes					
8.	Sawai Madhopur	Yes	Yes					
9.	Baran	No.	Added to Jhalawar					
10.	Bundi	No.	Added to Kota					
11.	Dholpur	No.	Added to Bharatpur					
12.	Karauli	No.	Added to Dausa					

13.	Tonk	No.	Added to Sawai Madhopur
	AVVNL		
1.	Ajmer	Yes	Yes
2.	Bhilwara	Yes	Yes
3.	Nagaur	Yes	Yes
4.	Udaipur	Yes	Yes
5.	Rajsamand	Yes	Yes
6.	Chittorgarh	Yes	Yes
7.	Banswara	Yes	Yes
8.	Jhunjhunu	Yes	Yes
9.	Sikar	Yes	Yes
10.	Pratapgarh	No	Added to Chittorgarh
11.	Dungarpur	No	Added to Banswara
	JdVVNL		
1.	Jodhpur city circle	Yes	Yes
2.	Jodhpur district circle	Yes	Yes
3.	Jalore	Yes	Yes
4.	Pali	Yes	Yes
5.	Barmer	Yes	Yes
6.	Bikaner	Yes	Yes
7.	Sri Ganganagar	Yes	Yes
8.	Hanumangarh	Yes	Yes
9.	Churu	Yes	Yes
10.	Sirohi	No	Added to Pali
11.	Jaisalmer	No	Added to Barmer
12.	Bikaner district circle	No	Added to Bikaner

Post the consolidation, the forecast was planned to be undertaken considering 26 Circles of the State.

The consumer categories considered for the forecast are as per the categories defined by the Distribution utilities in the State of Rajasthan. The historical data accessed for the ten year period is also segregated into the same categories. For ease of forecast and based on category behavior, data for few categories have been consolidated e.g. Industries, Public Water Works etc. after reviewing the historical data and based on the category behavior exhibited in the past.

For the forecast, the category names as defined by the utilities have been retained and the results shall be developed for the following categories

- Domestic
- Non-domestic
- Public Street lights (PSL)

- Agriculture (Metered, Nursery, Poultry)
- Agriculture (Flat unmetered)
- Industries (Small and Medium) -
- Industries (Large)
- Public Water Works (PWW) data for Small, Medium and Large added together
- Mixed load

For each circle and utility, the forecast shall be developed for each of the above categories.

The forecast for Railway Traction shall be considered for the whole state as a whole and will be derived separately and added to the demand of the state.

7. Baseline correction of historical data

The proposed methodology takes into account estimation of unserved electricity requirement and development of a baseline corrected data for consumer categories using a bottom-up approach. The basic premise for this method lies in estimating energy units to be supplied in non-supply hours using actual data available for supplied units in supply hours using a straight-line extrapolation method.

Baseline correction of historical data is required for the following reasons:

- Historical data of demand used for forecasts is energy units recorded at the consumer end and is a 'restricted' supply; Doesn't reflect the entire consumer demand for the historic period
- Due to failure of T&D infrastructure, planned load shedding and unplanned outages, demand of consumers is not served even when the entire demand is existing in the system thereby leading to an 'unserved demand'
- Previously, the power sector in the country was in a deficit position viz. demand exceeding supply, while in future it is anticipated that the availability of power will be surplus
- Also, it has been envisaged to supply uninterrupted and reliable power to consumers in future. Distribution utilities will be expected to serve 24 x 7 supply (unrestricted supply) to its consumers (except for some category of consumers including agriculture etc.)

The forecasts should be based on a baseline data which is at the same wavelength as the expected future electricity requirement i.e. using unrestricted baseline data for predicting future unrestricted electricity requirement. The correction of the baseline will also ensure that the historical data which is used for projecting is at the same base i.e. 24 hours supply. Usage of correct base will also ensure precision in forecasts.

In the proposed approach, the supply hours was considered as per the data available from sample feeders accessed from the distribution utilities. The supply hours for normal and block supply was analyzed to ascertain the current condition of supply across major categories.

Data collection was carried with support of the utility in the selected state. Discussions were held with utility to understand the following:

- Type of data available
- Period for which required data is available
- Format in which data is available
- Process to be followed to access data

Feeder data for certain months was available as the same had been used by the DISCOMs for internal reporting. The format in which the data was available was, however, not uniform across the DISCOMs. It was also mentioned that data pertaining to interruption counts of feeders are mostly recorded for undertaking O&M activities. However, that data cannot be directly converted into interruption in minutes as the duration of each interruption varies.

Following figure highlights a format in which data was made available by the utility.

FEEDER	01-Apr-17	02-Apr-17	03-Apr-17	04-Apr-17	05-Apr-17	06-Apr-17	07-Apr-17	08-Apr-17	09-Apr-17	10-Apr-17	11-Apr-17	12-Apr-17
FEEDER	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5
FEEDER	24	24	24	24	24	24	24	24	24	24	24	24
FEEDER	23.5	23.5	23.5	23.5	22	23.5	23.5	23.5	23.5	23.5	23.5	23.5
FEEDER	23.5	23.5	23	23	23.5	23.5	23.5	23.5	23	23.5	23.5	23.5
FEEDER	23.5	23.5	23	23	23.5	23	23.5	23.5	23.5	23.5	23.5	23.5
FEEDER	23.5	23.5	23.5	23.5	23	23.5	23.5	23.5	23.5	23.5	23.5	22.5
FEEDER	24	24	24	22	18.5	23	24	24	24	23.5	24	24
FEEDER	24	23.5	24	23	23.5	24	24	24	24	24	24	24
FEEDER	24	24	24	24	24	23.5	24	24	24	24	23.5	23.5
FEEDER	24	24	24	24	24	23	24	24	24	23	24	24
FEEDER	24	23	24	24	24	23.5	24	24	24	23.5	24	24
FEEDER	3	3.5	2.5	2	0.5	2.5	2	1	0.5	4	2.5	2.5
FEEDER	6	9.5	9	5.5	5.5	5	8	7.5	6.5	5	5.5	6.5
FEEDER			4.5	7	6	5	5.5	6	6	7	7	6
FEEDER	7.5	5.5	7	5	5	5	6	5.5	6	5	6.5	5.5
FEEDER	5.5	6	5	5	5	5	5.5	5	6	4.5	4.5	5.5
FEEDER			6	5	4.5	4.5	5	4	6.5	5	4	6
FEEDER	5.5	4	7.5	7	6.5	7	6	7	9.5	7	6	6
FEEDER	6.5	7.5	7.5	6.5	6.5	7	8	5.5	5.5	6	6.5	5
FEEDER			3.5	5	6.5	4	8	6.5	7	7.5	8	8
FEEDER			22.5	19.5	14.5	19	23.5	22	23.5	23	23	23

Figure 35: Circle wise feeder data accessed from utility

Data as available in the above format has been used to assess the unserved demand. Data, as received, is checked for any inconsistency or for any missing variable. Exercise was repeated for daily and monthly data as per the formats shown.

Post validation, it was observed that the supply hours were majorly categorized in three groups:

- 16-24 hours range
- 8 16 hours
- Less than 8 hours

From the above observation in data, the gap in supply was determined for three consumer categories. The assumptions considered for the three categories in terms of maximum supply hours be considered is as given below:

- Domestic 24 hour supply
- Non-domestic
 12 hour supply
- Agriculture
 8 hour supply

Since, clear tagging of feeders as Urban/ Rural is not available in the data, further categorization of Domestic, Non Domestic (Commercial) and Agriculture for Urban/ Rural has not been carried out. Ideally, the raw data should highlight the nature of the feeder (Urban/Rural) and to the category to which the feeder is being used to supply.

For the other major categories namely Industries, Public Water Works, Public Street light etc., it has been assumed that the required supply has been provided as per demand.

The assumption has been considered due to following data constraints

In the accessed feeder data, segregation of industrial feeders at Circle level is not available

 SLDC data records details of planned/ unplanned/ forced outages due to system constraints at state/ region level. In case of a particular system outage at state/ region level, it is difficult to estimate how much of it has led to unserved energy for industry category in a circle.

From the daily and monthly supply hour data, average supply hours for each month and for each circle has been determined.

FEEDER	Average (Hours)	Time Block	Gap in Supply (Minutes)	24 hours	12 hours	8 hours
FEEDER	7.43	8	34.00	NA	NA	34
FEEDER	7.70	8	18.00	NA	NA	18
FEEDER	21.57	24	146.00	146	NA	NA
FEEDER	8.07	12	236.00	NA	236	NA
FEEDER	7.27	8	44.00	NA	NA	44
FEEDER	6.42	8	95.00	NA	NA	95
FEEDER	8.57	12	206.00	NA	206	NA
FEEDER	22.00	24	120.00	120	NA	NA
FEEDER	21.07	24	176.00	176	NA	NA
FEEDER	8.88	12	187.00	NA	187	NA

Figure 36: Calculation of average monthly supply hours

Based on the monthly average supply hour determined for each feeder, the feeders were then categorized into one of the three consumer categories. For e.g. as shown in figure above, the average monthly supply duration for the first feeder is 7.43 hours. Hence, it has been categorized as an agriculture feeder and the gap in supply has been considered w.r.t 8 hours of block supply.

Similarly, all the feeders in a circle were categorized into one of the three categories. Post the categorization, the monthly average gap in supply for each time block for each circle was determined. The table below illustrates the same.

Table 31: Monthly average supply gap of a sample circle										
Time block	Monthly avg. gap in supply									
24 hour	2.4 hours									
12 hour	2.6 hours									
8 hour	1.7 hours									
	24 hour 12 hour									

The monthly average gap in supply hours was determined for all the months for which data is available. In the present scenario, for the selected state the monthly feeder data was available for limited months for the year 2016-17.

_							-
Supply gap (Mins)	Time Block	Month 1	Month 2	Month 3	Month 4	Average (Mins)	Average (Hours)
Circle 1	24 hours	155	124	160	178	168	2.8
	12 hours	174	176	178	147	169	2.8
	8 hours	173	168	170	209	142	2.4
Circle 2	24 hours	170	167	245	230	201	3.4
	12 hours	173	140	137	54	148	2.5
	8 hours	127	155	157	163	126	2.1
Circle 3	24 hours	157	128	125	146	142	2.4
	12 hours	168	143	142	127	155	2.6
	8 hours	98	118	114	105	99	1.7

Figure 37: Illustrative - circle wise average supply gap

The results as derived in the previous step for the particular period was considered for the same year i.e. FY 2016-17. This has been considered as the base year and the same has been extrapolated circle wise to arrive at the supply gap for the previous ten year i.e. up to FY 2006-07.

The following provides an indicative supply disruption for the state, arrived by averaging the disruption in supply hours for all sample circles.

- Domestic 169 min average disruption; 21.2 hours average supply per day
- Non-domestic 156 min average disruption; 9.4 hours average supply per day
- Agriculture 143 min average disruption; 5.6 hours average supply per day

The supply interruption data given in the national power portal is for the total number of interruptions and total duration of interruptions in a year. The same is not as per category wise and in several feeders the data is not available. Hence direct comparison cannot be carried out unless category wise details are available.

The assumptions considered for the extrapolation are:

- The gap in supply hours have been considered same for a particular year after averaging the monthly data. Month wise variation have not been considered.
- For the year previous to the current year, the gap in supply hours have been increased by 1%. The same has been carried out for each circle and for the three categories which have been defined earlier.
- The assumption of 1% increase in YoY supply gap over the previous years has been considered with the view that in the previous 10 years from FY 2006-07, the gap in supply hours has reduced
- Since there is no definite data available for supply hours to validate, the assumption has been considered based on realistic conditions that over the period of ten years, the improvement in gap in supply hours has been very minimal. Hence consideration of a higher % (say 5%) would not have been a realistic assumption in this case.
- The assumption considered above could have been validated in case feeder level historical data would have been available.

Table 32: II	llustrative: Extra	polation of g	ap in supply	hours highli	ghted for a sa	mple circle
	Category	FY 13-14	FY 14-15	FY 15-16	FY 16-17	
	Domestic	2.47	2.45	2.42	2.40	
	Non domestic	2.68	2.65	2.63	2.60	
	Agriculture	1.75	1.73	1.72	1.70	

The following figure illustrates the assumptions stated above:

The exercise was carried out for the historical data of all the circles. Post the extrapolation of the gap in supply hours for each category is carried out for every circle, the next step is to determine the supply hours for each category. The same is illustrated in the table below.

Table 33: Illustrative: Calculation of supply hours for historical data highlighted for a sample circle

Category	Unit in Hours		FY 14-15	FY 15-16	FY 16-17
Demostie	Target supply		24.00	24.00	24.00
Domestic	Gap in supply	Y ₂	2.45	2.42	2.40

	Actual supply	Y_1	21.55	21.58	21.60
	Target supply		12.00	12.00	12.00
Non domestic	Gap in supply	Y ₂	2.65	2.63	2.60
	Actual supply	Y1	9.35	9.37	9.40
	Target supply		8.00	8.00	8.00
Agriculture	Gap in supply	Y ₂	1.73	1.72	1.70
	Actual supply	Y 1	6.27	6.28	6.30

 * Y_2 and Y_1 - as defined in figure 1 of Section 3.1 of the report on Baseline correction

The above exercise was carried out for historical data for all the years.

The next step is to determine the unserved demand which could not be realized due to curtailment of supply. As per the proposed methodology, the unserved demand was determined by a straight line approach using the gap in supply hours calculated above and the restricted demand data available from the state utility.

The following section highlights the calculation for a sample circle done for the domestic category for the year FY 2014-15

- Monthly average hours of supply per month estimated using the methodology described above = [Y₁] = 21.55 hours
- Monthly average actual restricted supply units Domestic category = [X₁] = 148 MU (sample value)
- Monthly average hours of supply curtailed for Domestic supply = [Y₂] = 2.45 hours
- Monthly average un-served demand based on curtailed supply hours =[X₂] = [(24* Y₁) * (X₁ / Y₁)] = 16.82 MU
- Average unrestricted demand after baseline correction
 - $= [X_1] + [X_2]$

= (148 + 16.82) MU = 164.82 MU

Based on the above calculation

Served restricted unit = 148 MU Unserved units = 16.82 MU

Similarly, the unserved units was derived for each month of the previous ten years across categories and for each circles.

The monthly unserved demand for each categories are then summed up to arrived at the yearly demand. The following figure illustrates the calculation

		,					
		Apr-06	May-06	Jun-06	Jul-06	Aug-06	Sep-06
Domestic	Served	8.17	10.23	12.44	15.17	15.63	16.38
	Unserved	1.48	1.85	2.25	2.75	2.83	2.97
	Total	9.65	12.08	14.70	17.92	18.47	19.35
Non-Domestic	Served	2.56	3.01	3.66	3.80	3.97	4.01
	Unserved	0.69	0.81	0.98	1.02	1.06	1.07
	Total	3.25	3.82	4.64	4.82	5.03	5.08

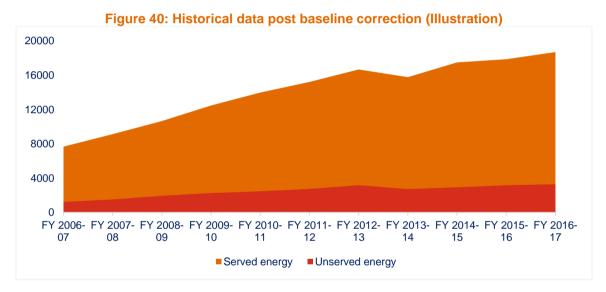

Figure 38: Category wise monthly served and unserved demand

Figure 39: Category wise yearly served and unserved data

nit (MU)	FY 2006-07	FY 2007-08	FY 2008-09	FY 2009-10	FY 2010-11
Served	148.07	178.92	221.22	255.97	297.30
Unserved	26.83	32.05	39.16	44.79	51.41
Served	40.86	49.26	57.61	67.04	74.07
Unserved	10.95	13.04	15.06	17.31	18.88
	Served Unserved Served	Served 148.07 Unserved 26.83 Served 40.86	Served 148.07 178.92 Unserved 26.83 32.05 Served 40.86 49.26	Served 148.07 178.92 221.22 Unserved 26.83 32.05 39.16 Served 40.86 49.26 57.61	Served 148.07 178.92 221.22 255.97 Unserved 26.83 32.05 39.16 44.79 Served 40.86 49.26 57.61 67.04

The year wise historical unserved demand determined for each category is added to the restricted demand to arrive at the unrestricted demand. The exercise has been carried out category wise and for each circle.

The following figure highlights the overall demand data after baseline correction:

The unrestricted demand determined above is the baseline corrected demand data which will then be used to forecast the energy demand for each category.

The unrestricted demand (baseline corrected demand) arrived as above is the summation of the following

- Served electricity (Restricted) which is the electricity served by the utilities in the state to the consumers, accessed from the electricity sales data of utilities
- Unserved electricity the portion of electricity demand which existed in the system but was not served due to various reasons like load curtailment, infrastructure issues etc., derived from gap in supply hours

In the subsequent tables, the unrestricted electricity demand post baseline correction is provided. The baseline correction has been carried out for each circles and then aggregated to arrive at the Distribution utility level.

In the subsequent sections, the steps of the methodology have been illustrated using a sample Circle. The Circle of JPDC has been considered for the same. The results of the JPDC circle shall be used to show the three methods that were used.

		Table 34: JVVNL: Baseline corrected historical data											
JVVNL	MUs	FY 2006-07	FY 2007-08	FY 2008-09	FY 2009-10	FY 2010-11	FY 2011-12	FY 2012-13	FY 2013-14	FY 2014-15	FY 2015-16		
Domestic	Served	1620	1911	2180	2658	3032	3142	3491	3761	4068	4418		
	Unserved	150	182	216	263	304	312	352	359	399	430		
	Total	1770	2093	2396	2921	3336	3454	3843	4121	4466	4848		
Non-Domestic	Served	647	780	835	898	996	1188	1550	1573	1805	1966		
	Unserved	172	205	219	233	258	304	391	398	445	480		
	Total	819	985	1054	1131	1254	1492	1941	1971	2249	2445		
Public Street Light		55	61	75	79	92	110	129	143	168	175		
Agriculture (M + N + P))	Served	884	1351	2062	2777	3288	4148	5135	4258	4741	5261		
	Unserved	389	585	876	1160	1349	1706	2047	1670	1828	1999		
	Total	1273	1936	2938	3936	4637	5854	7182	5928	6569	7259		
Agriculture (F)	Served	1017	1047	1137	1153	1051	783	724	581	530	517		
	Unserved	477	484	524	529	477	349	318	255	230	221		
	Total	1493	1532	1661	1682	1527	1132	1043	836	760	739		
Industry (Small + Med)		645	723	760	796	898	904	941	996	1104	1036		
Industry (L)		2071	2460	2747	3095	3520	3835	3721	3482	4294	3775		
PWW (S + M + L)		288	310	328	346	355	387	416	426	474	529		
Mixed Load		165	186	250	333	430	366	171	161	168	172		
	Restricted	7391	8829	10374	12136	13661	14863	16278	15381	17351	17850		
	Unserved	1188	1456	1835	2185	2388	2671	3108	2683	2901	3130		
	Total	8579	10286	12209	14321	16050	17535	19386	18063	20252	20980		

			Table	35: AVVNL:	Baseline co	rrected histo	rical data				
AVVNL	MUs	FY 2006-07	FY 2007-08	FY 2008-09	FY 2009-10	FY 2010-11	FY 2011-12	FY 2012-13	FY 2013-14	FY 2014-15	FY 2015-16
Domestic	Served	1069	1231	1421	1609	1893	2114	2410	2706	2925	3133
	Unserved	153	175	199	223	259	286	320	355	380	402
	Total	1223	1405	1620	1832	2152	2400	2730	3061	3305	3535
Non-Domestic	Served	297	356	388	404	442	514	717	816	901	1004
	Unserved	93	110	118	121	131	150	204	230	250	275
	Total	390	466	505	525	572	663	921	1045	1151	1280
Public Street Light		38	40	41	42	47	53	56	61	73	82
Agriculture (M + N + P))	Served	1079	1377	1623	1986	2217	2705	3464	3592	3545	3827
	Unserved	471	592	688	830	914	1098	1372	1403	1365	1454
	Total	1550	1969	2312	2816	3131	3803	4836	4994	4911	5281
Agriculture (F)	Served	1237	1268	1268	1260	1278	1317	1324	1282	1218	1112
	Unserved	539	545	537	526	527	535	524	500	469	422
	Total	1776	1813	1806	1786	1805	1851	1848	1782	1686	1534
Industry (Small + Med)		570	639	680	756	798	860	908	954	1066	1089
Industry (L)		1626	1970	2011	1937	2465	2446	2487	2567	2630	2319
PWW (S + M + L)		261	294	327	338	354	383	387	426	435	478
Mixed Load		108	137	154	227	283	256	109	96	106	109
	Restricted	6287	7311	7914	8558	9777	10646	11863	12500	12899	13154
	Unserved	1256	1421	1543	1701	1831	2069	2420	2488	2464	2554
	Total	7542	8732	9457	10259	11608	12714	14283	14987	15364	15707

Table 36: JdVVNL: Baseline corrected historical data											
JdVVNL	MUs	FY 2006-07	FY 2007-08	FY 2008-09	FY 2009-10	FY 2010-11	FY 2011-12	FY 2012-13	FY 2013-14	FY 2014-15	FY 2015-16
Domestic	Served	1071	1329	1414	1561	1811	2007	2255	2542	2793	3002
	Unserved	154	188	198	216	248	272	299	334	363	385
	Total	1225	1517	1612	1777	2059	2278	2555	2876	3156	3387
Non-Domestic	Served	313	396	409	417	456	527	780	838	904	986
	Unserved	98	122	124	125	135	154	222	236	251	270
	Total	411	518	533	542	591	681	1002	1073	1156	1256
Public Street Light		39	52	80	107	117	118	123	185	142	137
Agriculture (M + N + P))	Served	1280	1849	2437	3456	4069	4810	6288	6443	7473	7964
	Unserved	558	795	1033	1445	1678	1953	2490	2516	2878	3026
	Total	1839	2645	3470	4901	5747	6763	8778	8959	10351	10990
Agriculture (F)	Served	1162	1233	1264	1441	1357	1589	1388	1685	1335	1310
	Unserved	507	530	536	602	560	645	550	658	514	498
	Total	1668	1763	1799	2043	1917	2234	1938	2343	1849	1808
Industry (Small + Med)		466	535	550	576	638	694	781	803	850	846
Industry (L)		961	951	956	915	1077	1124	990	1077	1258	1183
PWW (S + M + L)		499	557	584	656	662	667	675	689	740	796
Mixed Load		286	320	359	457	533	488	335	324	350	351
	Restricted	6078	7222	8052	9586	10721	12024	13615	14587	15845	16574
	Unserved	1317	1636	1892	2389	2620	3024	3561	3744	4006	4179
	Total	7394	8858	9943	11975	13341	15048	17176	18330	19851	20753

JPDC	MUs	FY 2006-07	FY 2007-08	FY 2008-09	FY 2009-10	FY 2010-11	FY 2011-12	FY 2012-13	FY 2013-14	FY 2014-15	FY 2015-16
Domestic	Served	100	146	174	210	234	279	352	359	381	432
	Unserved	14	20	24	28	31	37	45	46	48	53
	Total	114	166	198	238	265	316	397	405	428	485
Non-Domestic	Served	38	49	55	71	74	108	153	168	195	207
	Unserved	13	17	19	24	25	36	50	54	62	65
	Total	51	66	74	95	100	145	203	222	256	272
Public Street Light		3	3	3	3	4	5	5	6	7	8
Agriculture (M + N + P))	Served	197	316	464	641	652	930	1081	827	896	998
	Unserved	100	158	229	312	312	438	495	374	399	438
	Total	298	475	693	953	964	1368	1576	1201	1295	1435
Agriculture (F)	Served	548	557	650	717	671	489	496	451	419	412
	Unserved	279	279	321	349	321	230	227	204	187	181
	Total	827	836	971	1066	992	719	723	654	606	593
Industry (Small + Med)		67	83	84	90	99	110	116	128	139	136
Industry (L)		187	239	328	398	506	634	597	559	704	584
PWW (S + M + L)		23	24	23	26	31	35	43	40	47	53
Mixed Load		10	12	17	24	33	34	10	8	7	9
	Restricted	1173	1429	1799	2180	2305	2624	2852	2545	2794	2838
	Unserved	406	475	593	713	690	742	818	677	695	737
	Total	1579	1904	2391	2893	2995	3366	3670	3223	3489	3576

8. Implementation of alternate methodology

8.1. Analysis of historical data – category wise to gather insights and understand behavior

The category wise historical data of sales and consumers was analyzed for all the Circles on the following aspects:

- Category wise composition in a circle
- Behavior of the category in the overall mix over the years

- Growth rate over previous year
- CAGR growth rates for the 9 periods

The analysis helped in understanding how the categories have contributed to the demand in a Circle and the demand of the Utility. For e.g. in certain cases, domestic category in one circle had much less growth while in another, the trend was different. The illustrations for the sample circle is highlighted below:

		Fig	jure 41: 、	JPDC – C	Consume	rs: Catego	ory wise (compositi	ion		
Categories	F	Y 2006-07	FY 2007-08	FY 2008-09	FY 2009-10	FY 2010-11	FY 2011-12	FY 2012-13	FY 2013-14	FY 2014-15	FY 2015-16
Domestic		61%	62%	64%	66%	68%	69%	70%	71%	72%	73%
Non-Domestic		8%	8%	8%	7%	7%	7%	7%	7% 🗌	7%	7%
Public Street Light		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Agriculture (M + N + P))		13%	14%	15%	16%	15%	15%	14%	14%	13%	13%
Agriculture (F)		16%	13%	10%	9%	8%	7%	6%	5%	5%	4%
Industry (Small + Med)		2%	2%	2%	1%	2%	1%	2%	2%	2%	2%
Industry (L)		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
PWW (S + M + L)		0%	0%	0%	0%	0%	1%	1%	1%	1%	1%
Mixed Load		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Figure 42: JPDC - Consumers: Growth over previous year

		gale la								
Categories	FY 2007-08	FY 2008-09	FY 2009-10	FY 2010-11	FY 2011-12	FY 2012-13	FY 2013-14	FY 2014-15	FY 2015-16	Average
Domestic	7%	18%	14%	10%	11%	8%	11%	9%	8%	11%
Non-Domestic	7%	7%	5%	3%	8%	8%	9%	10%	8%	7%
Public Street Light	17%	8%	3%	10%	3%	15%	12%	20%	32%	13%
Agriculture (M + N + P))	16%	24%	15%	6%	4%	3%	6%	5%	3%	9%
Agriculture (F)	-13%	-11%	-7%	-5%	-3%	-3%	-5%	-5%	-6%	-6%
Industry (Small + Med)	9%	9%	1%	11%	5%	12%	16%	9%	2%	8%
Industry (L)	18%	27%	17%	21%	12%	13%	10%	10%	12%	16%
PWW (S + M + L)	4%	16%	8%	11%	30%	51%	14%	29%	13%	20%
Mixed Load	10%	59%	37%	15%	-31%	-7%	6%	7%	5%	11%

Figure 43: JPDC Consumers: CAGR growth for 9 periods

CAGR	9 year	8 year	7 year	6 year	5 year	4 year	3 year	2 year	1 year
Categories	FY 2006-07	FY 2007-08	FY 2008-09	FY 2009-10	FY 2010-11	FY 2011-12	FY 2012-13	FY 2013-14	FY 2014-15
Domestic	7%	7%	7%	8%	9%	9%	9%	9%	8%
Non-Domestic	13%	13%	13%	15%	16%	20%	21%	26%	32%
Public Street Light	9%	8%	6%	4%	4%	4%	5%	4%	3%
Agriculture (M + N + P))	-6%	-6%	-5%	-5%	-4%	-5%	-5%	-6%	-6%
Agriculture (F)	8%	8%	8%	9%	9%	10%	9%	5%	2%
Industry (Small + Med)	15%	15%	14%	13%	11%	11%	11%	11%	12%
Industry (L)	19%	21%	22%	24%	27%	26%	19%	21%	13%
PWW (S + M + L)	9%	8%	3%	-2%	-5%	3%	6%	6%	5%
Mixed Load	NA								

Alternate methodology for Electricity demand assessment and forecasting

		Figure 4	4: JPDC -	- Historio	al sales:	Categor	y wise co	ompositic	n		
Categories	FY 20	06-07 FY 20	07-08 FY 20	08-09 FY 20	09-10 FY 20	10-11 FY 20)11-12 FY 20	12-13 FY 20	13-14 FY 20)14-15 FY 20	15-16
Domestic		9%	10%	10%	10%	10%	11%	12%	14%	14%	15%
Non-Domestic		3%	3%	3%	3%	3%	4%	5%	7% 📃	7% 🔳	7%
Public Street Light		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Agriculture (M + N +	P))	17%	22%	26%	29%	28%	35%	38%	32%	32%	35%
Agriculture (F)		47%	39%	36%	\$3%	29%	19%	17%	18%	15%	15%
Industry (Small + Me	ed) 📕	6%	6%	5%	4%	4%	4%	4%	5%	5%	5%
Industry (L)		16%	17%	18%	18%	22%	24%	21%	22%	25%	21%
PWW (S + M + L)		2%	2%	1%	1%	1%	1%	2%	2%	2%	2%
Mixed Load		1%	1%	1%	1%	1%	1%	0%	0%	0%	0%

Figure 45: JPDC - Historical sales: Growth over previous year

Categories	FY 2007-08	FY 2008-09	FY 2009-10	FY 2010-11	FY 2011-12	FY 2012-13	FY 2013-14	FY 2014-15	FY 2015-16	Average
Domestic	45%	20%	21%	11%	19%	26%	2%	6%	13%	18%
Non-Domestic	30%	13%	28%	5%	46%	41%	10%	16%	6%	22%
Public Street Light	21%	0%	4%	23%	14%	10%	11%	12%	16%	12%
Agriculture (M + N + P))	60%	47%	38%	2%	43%	16%	-23%	8%	11%	22%
Agriculture (F)	2%	17%	10%	-6%	-27%	1%	-9%	-7%	-2%	-2%
Industry (Small + Med)	25%	1%	7%	11%	11%	5%	10%	8%	-2%	8%
Industry (L)	28%	37%	21%	27%	25%	-6%	-6%	26%	-17%	15%
PWW (S + M + L)	2%	-3%	13%	20%	14%	22%	-7%	18%	14%	10%
Mixed Load	19%	45%	42%	39%	1%	-70%	-26%	-2%	19%	7%

Figure 46: JPDC - Historical sales: CAGR growth rates

CAGR	9 year	8 year	7 year	6 year	5 year	4 year	3 year	2 year	1 year
Categories	FY 2006-07	FY 2007-08	FY 2008-09	FY 2009-10	FY 2010-11	FY 2011-12	FY 2012-13	FY 2013-14	FY 2014-15
Domestic	18%	15%	14%	13%	13%	12%	7%	10%	13%
Non-Domestic	21%	20%	21%	20%	23%	18%	11%	11%	6%
Public Street Light	12%	11%	13%	14%	13%	12%	13%	14%	16%
Agriculture (M + N + P))	20%	15%	12%	8%	9%	2%	-3%	10%	11%
Agriculture (F)	-3%	-4%	-6%	-9%	-9%	-4%	-6%	-4%	-2%
Industry (Small + Med)	8%	6%	7%	7%	6%	5%	5%	3%	-2%
Industry (L)	13%	12%	9%	7%	3%	-2%	-1%	2%	-17%
PWW (S + M + L)	10%	11%	13%	13%	11%	11%	7%	16%	14%
Mixed Load	-1%	-3%	-9%	-15%	-23%	-29%	-5%	8%	19%

From the figures above, observations as drawn are given below:

- Share of domestic consumers has increased in the circle with corresponding increase in electricity requirement
- There has been a shift of consumers and demand from Agri (F) to Agri (M)
- In the Industrial category, there has been growth in new consumers over the years, however demand in the last 3-4 years has not picked up specifically in Industries (L) category

Similarly, specific trends were observed for each of the 26 circles across categories and this helped in understanding the individual behavior. The trends as observed were used in undertaking the forecasts.

8.2. Selection of forecasting methods for each forecast period

There are a number of forecasting methods (Econometric, Time series, Trend analysis etc.) through which electricity demand could be forecasted. For forecasting demand under various time horizons (short, medium and long), combination of methods has been used for different forecast periods. Every method has its merits and demerits. Every method is dependent upon a set of input variables.

After analysis of the historical data, the four methods which were used for the forecast period are given as below:

	Та	ble 38: Selection of foreca	sting methods	
SI. No.	Method	Periodicity	Forecast level	Data level
1.	Trend method	Short/ Medium/ Long	Category wise in each circle	Yearly data
2.	Time series method – Holt Winters method	Short/ Medium/ Long	Category wise in each circle	Monthly data
3.	Econometric method	Short/ Medium/ Long	Category wise in each circle	Yearly data
4.	End use method	Medium/Long	Specific categories	Yearly data

As per the scope of work of this assignment, the short, medium and long terms requirements have been defined as under:

Short term	5 years	FY 2016-17 to FY 2020-21
Medium term	5 years	FY 2021-22 to FY 2025-26
Long term	6 years	FY 2026-27 to FY 2031-32

To start with the forecast, periodicity restrictions on the methods have not been imposed.

.

8.3. Use of trend method

Post the analysis of the historical data and after determination of the growth rates (year on year growth and CAGR growth) for energy consumption, consumer data, the forecast model using trend method was developed. The process was carried out for each consumer category and repeated for all the circles.

The application of trend method for specific categories is varied and different approaches and factors have been used to develop the forecast.

.

. . .

....

	Table	39: Details of category wise app	proach to forecasting
SI. No	Categories	Method used	Additional factors
1.		Number of consumers x	Growth rate of consumers
		Consumption per consumer	Growth of consumption per consumer
			Manual option to enter above rates
			Latent/ Lifestyle
			Energy Efficiency
2.	Non- domestic	Number of consumers x	Growth rate of consumers
		Consumption per consumer	Growth of consumption per consumer
			Manual option to enter above rates

			Energy Efficiency
3.	Public Street light	Number of consumers x	
	i ann chorn gu	Consumption per consumer	Growth rate of consumers
			Growth of consumption per consumer
			Manual option to enter above rates
			Energy Efficiency
4.	Agriculture (MNP)	Number of consumers x	Growth rate of consumers
		Consumption per consumer	Growth of consumption per consumer
			Manual option to enter above rates
			Energy Efficiency
5.	Agriculture (F)	Number of consumers x	Growth rate of consumers
		Consumption per consumer	Growth of consumption per consumer
			Manual option to enter above rates
			Energy Efficiency
6.	Industries	Sales x Historical growth rate	
0.	inductive	Calco A Historical growin rate	Manual option to enter growth rate
	(Small + Medium)		Energy Efficiency
7.	Industries (Large)	Sales x Historical growth rate	Manual option to enter growth rate
			Energy Efficiency
8.	Public Water Works	Soloo y Historical growth rate	
0.	(PWW)	Sales x Historical growth rate	Manual option to enter growth rate
			Energy Efficiency
9.	Mixed load	Sales x Historical growth rate	Manual option to enter growth rate
			Energy Efficiency
10.	Railways	Forecast carried out independe	
	-		

The approach as defined above was used separately for the three forecast terms i.e. separate trends were used each of the short, medium and term terms to arrive at the forecast.

In summary, the method was used in:

- 3 Distribution utilities
- 26 Circles
- 9 consumer categories
- 3 forecast horizons separate trends for Short, Medium and Long Terms

Therefore 702 combinations of individual forecast were developed using the trend method at the lowest forecast level and then aggregated to arrive at the Circle, Distribution utility and State level forecast at unrestricted level. The following table highlights the base forecasts arrived for the sample Circle – JPDC.

JPDC (MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	522	562	604	648	695	748	804	863	925	990	1068	1151	1237	1328	1423	1521
Non-Domestic	293	316	340	366	393	423	454	488	523	561	601	643	688	735	784	836
Public Street Light	9	9	10	10	10	10	10	10	10	10	10	11	11	11	11	11
Agriculture (M + N + P))	1523	1615	1712	1813	1920	2005	2094	2185	2278	2373	2470	2569	2670	2772	2876	2980
Agriculture (F)	508	443	386	337	293	232	183	144	114	90	62	42	29	20	14	9
Industry (Small + Med)	142	148	154	161	167	170	173	176	178	181	183	186	188	190	192	193
Industry (L)	617	651	686	723	762	774	786	798	809	819	830	839	848	857	864	871
PWW (S + M + L)	57	60	64	68	72	77	81	86	91	97	102	108	114	120	126	133
Mixed Load	9	10	11	11	12	13	14	14	15	16	17	18	19	20	22	23
	3680	3814	3967	4138	4325	4453	4600	4764	4944	5137	5344	5567	5804	6053	6311	6577

The base forecast for the Circle is excluding the following

- Demand from Railways
- Additional demand due to planned agriculture and domestic connections
- Additional demand due to other factors like new infrastructure projects
- Open access and captive
- Electric vehicles

Similarly, the forecasts were worked out for all the other circles.

8.4. Use of Holts-Winter's multiplicative and additive exponential smoothing

Exponential smoothing is a technique that is usually applied to time series data, either to produce smoothed data for presentation, or to make forecasts. Whereas in the simple moving average method the past observations are weighted equally, exponential smoothing assigns exponentially decreasing weights over time. In other words, recent observations are given relatively more weightage in forecasting method than the older observations.

Holts-Winter's multiplicative and additive exponential smoothing is one of the commonly used techniques used for forecasting. This model extends Holt's two parameter model by including a third smoothing operation to adjust for the seasonality. The equation assumes that the trend is additive and that the seasonal influence is multiplicative. This method models trend, seasonality and randomness using as efficient exponential smoothing process. The figure below highlights how the method decomposes a historical data into the different components. The forecast using his method has been developed using R software.

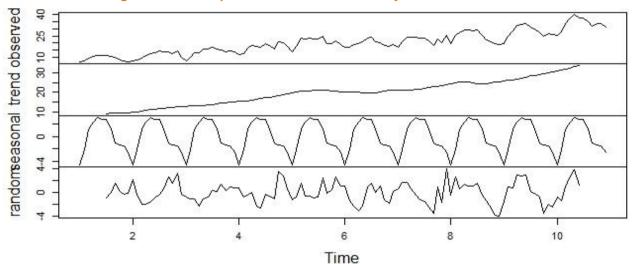
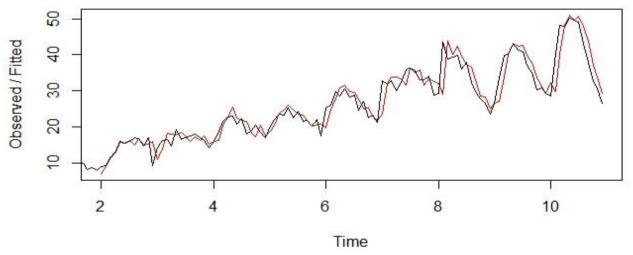



Figure 47: Decomposition of historical data by Holt-Winter's method

After the decomposition, the method models the historical data as shown below:

Figure 48: Modeling of historical data using Holt-Winter's method

Post the modelling, the monthly forecasts of electricity are developed for each category. The following table highlights the base forecasts arrived for the sample Circle – JPDC.

JPDC (MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	461	511	561	610	660	710	760	809	859	909	958	1008	1058	1108	1157	1207
Non-Domestic	275	295	314	334	353	373	392	412	431	450	470	489	509	528	548	567
Public Street Light	8	9	9	10	10	11	11	12	13	13	14	14	15	15	16	16
Agriculture (M + N + P))	1781	1975	2169	2363	2557	2751	2945	3139	3333	3527	3721	3915	4109	4303	4497	4691
Agriculture (F)	252	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	165	178	194	211	229	249	269	290	312	335	359	383	408	434	460	487
Industry (L)	614	664	714	764	814	864	914	964	1014	1064	1114	1164	1214	1264	1314	1364
PWW (S + M + L)	58	63	67	72	76	81	85	89	94	98	103	107	112	116	121	125
Mixed Load	11	13	15	17	19	21	23	25	28	30	32	34	36	38	40	42
	3626	3747	4044	4381	4720	5059	5400	5741	6083	6426	6770	7115	7460	7806	8153	8500

The base forecast for the Circle is excluding the following

- Railway demand
- Additional demand due to planned agriculture and domestic connections
- Additional demand due to other factors like new infrastructure projects
- Open access and captive
- Electric vehicles

Similarly, the forecasts were worked out for all the other circles.

8.5. Identification of Independent variables

For undertaking the forecast using econometric method, identification of independent variables is a crucial step. In this stage, a large number of variables are looked into and tested. Since econometric method has been planned to be used for all the categories, hence a broad range of major independent variables were shortlisted so that impact on electricity can be found out.

Availability of historical data of independent variables is a critical aspect in selection. Also it has to be ensured that the value of the variables are kept at the same base years for uniformity. For e.g. GSDP data is available in base of 2004-05 and also for 2011-12. Since 10 years of historical data is being used from FY 2006-07, the data for the relevant base years have been selected. The historical data of independent variables have been taken from sources available in public domain. Following is the list of the independent variables which are considered.

SI. No	Independent variables	Data level
1.	Population	State level
2.	Gross GDP	State level, Constant prices at 2004-05
3.	Per Capita	State level, Constant prices at 2004-05
4.	Wholesale price index	State level (Base Year 1999-2000=100)
5.	Consumer price index	State level (Base Year 2001=100)
6.	IIP General	State level at Base year 2004-05
7.	IIP Electricity	State level at Base year 2004-05
8.	IIP Manufacturing	State level at Base year 2004-05
9.	Index of Agriculture production	State level
10.	Area under crops	State level
11.	Area under irrigation	State level
12.	Category wise tariff	State level, 9 categories
13.	Number of consumers	Category wise

Data sources: Economic review published by Govt. of Rajasthan; Population – Census data

8.6. Development of econometric equations and forecast

The Econometric analysis was carried out across 26 circles over 9 consumer categories with the shortlisted independent variables via regression methodology in SPSS software.

From a macroeconomic consideration, all the independent variables mentioned have been assumed to influence electricity demand. Certain category specific exclusions have been also undertaken. For e.g. the independent variables for Agriculture were not included while developing the equations of other categories. For setting up the econometric model, an initial functional form has been formed with electricity demand of that particular category as the dependent variable and the selected intendent variables as independent variables. Then regression analysis was conducted on the SPSS software to determine the co-efficient of the independent variables and to test for significance of these variables. The equations were checked initially using the R sq. and adjusted R sq. values. Those equations wherein the values are above 95% have been shortlisted. Also it has been checked that even with high coefficient of determination, independent variables which were not having impact are dropped.

The equation and the variables used in the equation were selected after analyzing the p – value and t-statistic in the regression results. Post selection of variables, regression equations were developed with significant variables and functional form of equations were derived with the coefficients.

In many of the cases, equations which were not meeting test criteria were dropped. For few categories, no relations could be formed. In categories wherein no equations were formed, the forecast developed using other methods have been used in place.

After selection of the independent variables for each category, the final econometric equations were developed. As the regression equation is a function of various independent variables, the dependent variable can be established only if values of all independent variables are known. Hence to estimate the future value of the dependent variable, the forecast of independent variables are worked out using trend method. Subsequently, electricity demand forecast was worked out for each category and circle. The values obtained for each category was then aggregated to arrive at aggregate level forecasts.

In the following table, the shortlisted independent variables and the equation developed for the sample circle is shown

	Table 43: Econometric equations developed for the Sample circle JPDC											
SI. No.	Category	Independent variables	Equation									
1.	Domestic	WPI, Domestic tariff	-186.599 + 1.503 WPI +41.389 DomTariff									
2.	Non-Domestic	Population, WPI, Number of consumers	669.889 – 1.803E^-5 Population + 1.671 WPI + 0.012 Consumers									
3.	Public Street Light	GSDP, Consumers	- 1.514 + 2.032E^-5 GSDP + 0.06 Consumers									
4.	Agriculture (M + N + P))	GSDP, Tariff, IAP index, Area under Crops	- 691.657 + 0.016 GSDP – 279.251 Tariff – 2.613 IAP – 3.043 E^-5 AreaCrops									
5.	Agriculture (F)	No relation	-									
6.	Industry (Small + Med)	Population	-310.072 + 5.989E^-6 Population									
7.	Industry (L)	No relation	-									
8.	PWW (S + M + L)	GSDP, WPI, CPI, Consumers, IIP General	15.363 + 0.001 GSDP + 0.175 WPI – 0.486 CPI + 0.005 Consumers – 0.336 IIP Gen									
9.	Mixed Load	No relation	-									

Similar equations were developed for the categories in other circles also and forecasts were developed for the circles. The forecast developed for JPDC circle is given in the following table:

JPDC (MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	534	590	652	719	793	873	962	1059	1165	1282	1411	1553	1709	1882	2072	2282
Non-Domestic	321	359	400	445	495	548	607	671	740	815	897	985	1080	1184	1295	1416
Public Street Light	9	9	10	12	13	14	15	16	17	18	20	22	24	26	28	31
Agriculture (M + N + P))	1461	1592	1724	1854	1981	2103	2219	2326	2421	2503	2566	2607	2621	2603	2546	2444
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	151	160	169	178	188	198	208	218	228	238	249	260	271	283	294	306
Industry (L)	614	664	714	764	814	864	914	964	1014	1064	1114	1164	1214	1264	1314	1364
PWW (S + M + L)	58	63	67	72	76	81	85	89	94	98	103	107	112	116	121	125
Mixed Load	11	13	15	17	19	21	23	25	28	30	32	34	36	38	40	42
	3159	3451	3752	4061	4378	4702	5032	5368	5707	6049	6391	6731	7067	7394	7710	8009

The base forecast for the Circle is excluding

- Railway demand
- Additional demand due to planned agriculture and domestic connections
- Additional demand due to other factors like new infrastructure projects
- Open access and captive
- Electric vehicles

Similarly, the forecasts were worked out for all the other circles.

8.7. Impact of Electric Vehicles

The Government of India has set an ambitious target for an all-electric vehicle economy in the country by 2030. The first push for the same started in the year 2013, when NEMMP 2020 was launched to promote hybrid and electric vehicles in the country. Subsequently FAME scheme was launched w.e.f 1st April, 2015 with the objective to support hybrid/electric vehicles market development and manufacturing eco-system. The scheme has four focus areas i.e. technology development, demand creation, pilot projects and charging infrastructure.

The uptake of EVs will depend majorly on the adequate deployment of electric vehicle supply equipment (EVSE) needed to recharge EVs. The systems are still under planning stage and estimations have to be developed for the additional power which will be required to support these EVSEs. At present, there is no definite data for the number of charging infrastructure available in the selected state nor there a definite outlook of the same. Hence the estimation of additional power demand have been worked out based on assumptions and by taking reference to available EV vehicle data.

The methodology used to forecast electricity requirement for EVs for the State of Rajasthan is as given below:

- Historical data of all types of vehicles registered in Rajasthan was considered upto FY 2016-17
- From FY 2017-18, for each vehicle types, conversion factors were used to estimate the number of EVs that might be sold in the state. The premise is that EVs initial sales will start from consumers who will shift from conventional fuel to EVs
- The growth phase of EVs was divided into three phases and different overall sales growth rates were assumed.

Phases	Period	Nature	YoY growth rate		
Phase I	FY 2019-23	Initiation phase	10%		
Phase II	FY 2024-28	Growth phase	15%		
Phase II	FY 2029-32	Mature phase	20%		

 To compare the various vehicles types and to determine the motor capacities to be used in the vehicles, data from currently available EVs were considered. Details are as given below:

Vehicle class	Reference vehicle	Motor Capacity
Motorized Rickshaws	Mahindra eAlpha Mini	10kWh
Two Wheelers	Hero Electric bike	1kWh
Auto Rickshaws	Mahindra eAlpha Mini	10kWh
Tempo carrying goods	-	2 x 10kWh
Tempo carrying passengers	-	2 x 10kWh
Car	Mahindra eVerito	30kWh
Taxi	Mahindra eVerito	30kWh
Buses and Mini Buses	Ashok Leyland Circuit	100kWh

- For each of the vehicle types, average hours of charging were considered based on normal operation.
- The methodology also considered the following assumptions
 - Vehicle life considered for 15 years
 - o No EVs will retire during the forecast period
 - o The motor capacities have been assumed as constant during the period
 - \circ $\,$ The phases of growth has been defined considering the maturity levels of EVs over the years
 - It has been assumed that there won't be any infrastructure lag from the supply side and the demand will maintain the growth rates

Based on the above, the additional demand from EVs for the complete state has been worked out as given below:

	Table 45: Additional electricity requirement (MUs) due to EVs in Rajasthan													
FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32
44	92	145	204	268	338	420	513	620	744	886	1057	1261	1507	1801

8.8. Assessment of specific demand using end use method

The end use method have been used to determine specific additional demand of certain categories which could not be captured in the base forecast developed using historical demand. The approaches for end use method are varied depending on the target and the end result. In the following sub-sections, the demand assessed for different categories are given.

8.8.1. Railways

The Electricity Act, 2003 has provided deemed distribution licensee status to Railways. In November' 15, CERC, in its order against a petition filed by the Railways had clarified that the Railways are authorized entity under the Railway Act to undertake transmission and distribution, in connection with its working and Railway is a deemed Licensee under Electricity Act.

For the state of Rajasthan, the demand from Railway traction was historically included as a separate category in the sales of distribution utilities until the year FY 2015-16. Due to deemed licensee status, the demand is no longer considered under the utilities. In the present forecast, the same has been incorporated separately as an additional demand within the overall demand of the state. To forecast the traction demand in the state, the monthly historical data for traction was analyzed and forecasted using time series methods to arrive at the forecast of the upcoming years.

The following table provides the yearly demand assessed for Railway.

	Table 46: Additional electricity requirement (MUs) from Railway traction														
FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32
433	451	470	488	507	526	544	563	581	600	618	637	656	674	693	711

8.8.2. Domestic: Power For All (PFA) and Saubhagya scheme

The PFA scheme is expected to improve the entire value chain of the power sector and ensure reliable and uninterrupted electricity supply to all households, industries and commercial establishments. The target was to provide access to electricity to all un-connected consumers by FY 2018-19 and then provide reliable and

continuous power supply by the year FY2021-22. Power supply to agriculture and unconnected households is also supposed to increase within this projected time frame.

In continuation of the above, Government launched the Saubhagya scheme which is targeted more towards ensuring last mile connectivity in urban and rural areas and to release electricity connections to un-electrified households in the country. With such changes happening, the overall demand and category wise consumption is expected to increase.

As per available information, ~78% of the ~ 91.57 lakh domestic households in the state are connected and are being provided electricity and the balance ~ 19.80 lakh households are to be connected as per the scheme. The DISCOMs target is to connect 6 lakh household every year.

In the projections developed for the base forecast for the domestic category, because of the growth rate considered, currently around 6 lakh consumers are being added in the year FY 18, FY 19 and FY 20 and hence the demand has already be taken care of. No additional requirement has been added at this point.

8.8.3. Agriculture category

The Government of Rajasthan had launched a scheme in the year 2015 to provide 40,000 new agriculture connections every year. In the base forecast, the yearly additions is already considering adding more than 40,000 new connections every year. Hence, no additional requirement is being added in the forecast.

8.8.4. Open Access and Captive

Open Access (OA) transactions in Rajasthan are largely categorized by majorly short term open access consumers/ transactions and minimal medium/long term open access consumers and transactions. Short term open access energy demand of the consumer is based on market trends i.e. the consumers will purchase energy from exchange if the price prevailing at the exchanges is favorable to them as compared to the energy charges recovered by the DISCOM from the industrial consumer. The switching by consumers between open access power and DISCOM power is very dynamic and difficult to predict.

Over the past years the DISCOM observed stagnant or negative growth in consumption from Industrial categories (Small/Medium/Large) largely due to increasing trend of short term Open Access transactions. With the consumption going down from a major category, the stranded capacity of the DISCOMs increased leading to further worsening of the already precarious financial position of the DISCOMs.

In 2016 the Rajasthan Electricity Regulatory Commission (RERC) notified the "Rajasthan Electricity Regulatory Commission (Terms and Conditions for Open Access) Regulations, 2016" with the following main provisions:

- Mandatory requirement to give a schedule for 24 hours
- Requirement of uniform schedule for at least 8 hours
- Not more than 25% variation in schedule during the entire day
- Restricting deemed DISCOM drawl based on schedule provided by OA consumer on day ahead basis

These provisions resulted in reducing of the frequency of switching by the short term OA consumers. Moreover, the regulations also ensured that consumers who used to declare fictitious demand of 1 MVA and above and opt for Open Access are not able to do so anymore. Further the regulations have mandated that the open access consumers maintain a contract demand equivalent to the quantum of power being procured from various sources (including open access and DISCOM power).

RERC also came out with an Order on determination of Additional surcharge and Cross subsidy surcharge in 2016. The following were the rates determined by the RERC:

- Additional surcharge of Rs 0.80 per unit
- Voltage wise Cross subsidy surcharge for industrial consumer:
 - o 11 KV: Rs. 0.83 per unit

- 33 KV: Rs. 1.39 per unit 0
- 132 KV: Rs 1.63 per unit 0

With additional surcharge and cross subsidy surcharge determination by RERC, the DISCOMs observed a reversal in the trend of Open access transactions in the State and this resulted in further reduction in the quantum of power procured from open access. Upon analyzing the recent trends in DISCOM sales from industrial category, it is observed that the sales in the first 6 months of FY 2017-18 increased by 15-20% as compared to the last 6 months of FY 2016-17. Similarly in case of open access transactions, it was observed that the power purchased from open access and captive decreased by ~70% in Rajasthan in the month of November 2017 as compared to November 2016.

Due to the above highlighted factors, it is observed that short term open access forecasting would be very dynamic and is therefore is a challenge to forecast. Thus the quantum of Open Access power has been assessed based on the following approach:

- Combined data for open access and captive power purchased from April 2016 to November 2017 was • received from the DISCOMs. However, the data could not be segregated to ascertain specific trends
- The data was extrapolated for the remaining months of FY 2017-18 based on past trend observed from FY 2016-17. Such data for FY 2017-18 has been considered as our base of forecasting power purchased from open access for the future years
- Based on consultation with stakeholders in the state, it has been concluded that the decrease in power • purchased from open access may have bottomed out and the growth will thus remain stagnant till any further orders on surcharges are passed by RERC
- For captive power plants, with stringent environmental norms in place, it is anticipated that many captive power plants who won't be able to meet the norms will have to be shut down. And with improved infrastructure, the resultant demand is expected to progressively shift to the grid.
- Considering all the factors and assumptions, a nominal growth rate of 5% from FY 19 has been considered for projection of power purchased from Open access and Captive consumption

	Table 47: Electricity requirement (MUS) from OA and Captive														
FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32
4568	2845	2987	3136	3293	3458	3630	3812	4003	4203	4413	4633	4865	5108	5364	5632

Table 47. Electricity requirement (MUIs) from OA on

8.9. Assessment of additional demand

The impact of additional demand has been considered in this section post the development of the forecast to further refine the results. The anticipated additional load has been added to the demand arrived by the hybrid approach. The information on such loads has been captured by consultations, primary and secondary research, review of infrastructure schemes, housing schemes and master plans etc. Depending on information on additional load as available in the public domain and with certain approximations, the additional loads have been derived.

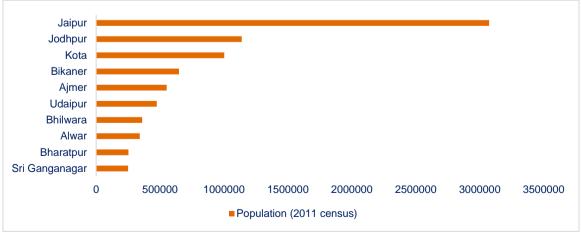
8.9.1. Housing: Chief Minister's Jan Awas Yojana / Rajasthan housing board

Rajasthan Housing Board (RHB) was established on 24th February 1970 as an autonomous body to provide for measures to be taken to deal with and satisfy the need of housing accommodation in the State. RHB primarily focuses on affordable housing activities for society at large with special emphasis on economically weaker sections. By December, 2016 RHB has taken up construction of 2,50,309 dwelling units, out of which 2,47,425 dwelling units have been completed, 2,44,892 dwelling units have been allotted and 2,31,311 dwelling units have been handed over to applicants.

As per consultation with Housing Board officials, the electrical loads of houses which have been handed over are already included in the demand data taken from the DISCOMs. Hence it was suggested that the additional demand of houses which are under construction should only be considered. As per the data available upto October 2017, 2884 houses are under construction and hand over will start from FY19. As per officials, the houses are occupied on average post 2-3 years of hand over i.e. by FY 21.

	Table 48: Data for State housing scheme as on Oct'17											
	EWS	LIG	MIG I	MIG II	HIG	Total						
Taken Up	81212	69531	41759	35666	22141	250309						
Completed	80874	68108	41501	35241	21701	247425						
Allotted	79617	67785	40806	35053	21631	244892						
Handover	72771	60870	37687	33534	26449	231311						
Under construction	338	1423	258	425	440	2884						

The expected demand has been worked out as per the load estimation formula shared by RHB.


8.9.2. Review of Master Plans

A master plan comprises sector plans and each sector plan comprises several smaller schemes and projects. Out of 190 municipal towns, master plans for 184 municipal towns have been prepared by Town Planning Department, Depart of Urban Development and Housing, Government of Rajasthan and was approved by the Government. Out of all the Master, for the major cities in Rajasthan, the end year of planning period is varied and Master plans have been prepared for the period ending in the year 2025 to upto 2033 in other towns.

In order to estimate the additional load which may arrive due to implementation of planned initiatives, upon consultation, it was understood that the focus of implementation will be centric around Jaipur and few of the major towns.

The following figure provides the list of major towns in Rajasthan in terms of population. It can be observed that out of the top 10 cities in Rajasthan, the combined population of other 9 cities is approximately twice than that of Jaipur.

The premise for development of Master plans of city/ towns is by extrapolating the population of a city/ town upto a target year and then assessing the amenities which will be required additionally to attain a level of standard of living.

As per the projections provided in the Jaipur Master Plan 2025, there will be 15, 12,320 households by the year 2025 in the Jaipur master plan area covering city and other limits. The number of domestic households considered for forecast in Jaipur City Circle and Jaipur District Circle combined for the year FY 2024-25 is 18, 10,350. Hence no additional demand as per the master plan for households has been considered.

In terms of additional social amenities proposed in the Jaipur Master Plan 2025 as per population projections, 3480 Ha of area is proposed to be utilized to develop the following: (insert references):

- School- Primary, Secondary
- Colleges
- Technical education institutes
- General hospitals
- Polyclinics
- Police station

To arrive at the estimated additional energy requirement due to Master plan, following assumptions have been considered.

- In the period from 2025-2032, the implementation of the master plan schemes will be in the 10 major cities of Rajasthan
- The impact of the new amenities has been considered from the year FY 2025-26 and subsequent demand is assumed to grow at 10% Y0Y in line with the growth of Commercial categories
- Since base forecast has been developed considering historical growth, major portion of the new anticipated demand will considered in the forecast. Additionally, of the total requirement, 20% has been assumed to be as additional demand over and above the base forecast
- Since combined population of 9 major cities is ~ twice of the population of Jaipur, it has been assumed that the trend will continue.
- To account for development of Jaipur and 9 other major cities in the period from 2025, as per population estimates given above, (3480 x 3) Ha has been assumed will be developed
- The electricity demand has been worked out considering suitable loads for the amenities considered and electricity requirement in terms of MUs has been derived and added to the base forecast.

8.9.3. Jaipur Metro Rail project

The work of Jaipur Metro Rail Project Phase I-A has completed and is in operation since 03 June, 2015. As per data accessed from Jaipur Metro, the current load is 4.5 MVA. The Phase I-B of the Metro project is expected to commence operation in FY19 and the load upto 6 MVA. The electrical infrastructure and connectivity with the DISCOM is already in place and is accounted for.

The next phase is expected to commence post phase IB and as per planning, the total expected load of 20MVA is expected by the year 2030.

The additional 14 MVA load has been added from the year 2030 with the assumption that the next phase of operations will commence in the year 2030.

8.9.4. Smart City

Smart City Mission Launched in June 2015 with a target of 100 Cities to be developed as Smart Cities in India. Four cities of Rajasthan namely - Jaipur, Udaipur, Kota & Ajmer has been shortlisted for development.

The Smart Cities will be implemented through a dedicated SPV through 2 strategic ways of development

- Area Based Development(ABD)
- Pan City Development

Area Based Development further is sub divided into 3 components

- Retrofitting: Planning & Development in existing built up area
- Redevelopment: Replacing of Existing Built environment
- Greenfield: Development of a Vacant Area

Pan City Development: application of selected Smart Solutions to the existing city-wide infrastructure.

Major initiatives identified for implementation in the four cities.

- Area Based Development (retrofitting & retrofitting model) Sustainable Mobility Corridors, Heritage and tourism, smart civic infrastructure, conservation of buildings, water body conservation, Environment &eco-friendly recreational projects etc.
- Pan City Development: development envisages application of selected Smart Solutions to the existing city-wide infrastructure. Application of Smart Solutions will involve the use of technology, information and data to make infrastructure and services better. E.g. Integrated Traffic Management, Security & Surveillance system, Intelligent Street lights, City E-governance, Solid Waste Management, Citywide smart utilities system etc.

The idea of smart city development in the four cities considered is majorly for retrofitting and re-development and implementation of smart solutions. The extent of the implementation including additional load if any could not be ascertained directly as there is lack of information in public domain. Considering the current pace of the projects, no additional demand has been considered.

8.9.5. Delhi Mumbai Industrial Corridor

Delhi - Mumbai Industrial Corridor (DMIC) is India's most ambitious infrastructure programme aiming to develop new industrial cities. The objective is to expand India's Manufacturing & Services base and develop DMIC as a "Global Manufacturing and Trading Hub". The programme will provide a major impetus to planned urbanization in India with manufacturing as the key driver. In addition to new Industrial Cities, the programme envisages development of infrastructure linkages like power plants, assured water supply, high capacity transportation and logistics facilities as well as softer interventions like skill development programme for employment of the local populace. In the first phase eight new industrial cities are being developed. The programme has been conceptualized in partnership and collaboration with Government of Japan.

The longest stretch of the 1483 km DMIC route (about 39%) passes through Rajasthan. As per the plan, two industrial areas along with associated integrated facilities are to be developed

- Khushkhera- Bhiwadi- Neemrana Investment Region
- Jodhpur Pali Marwar Investment Region

As per the master plans of the two proposed regions, the development has been scheduled under three phases

- Phase 1 Initiation, pilot phase infrastructure and early development Years 2016-2022;
- Phase 2 Core development Years 2023-2032
- Phase 3 Mature development and completion Years 2033-2042

The master plan of the two investment regions provides the estimated power requirement as given below

Table 50: Demand projected in the DMIC investment regions in Rajasthan										
Yearly Demand (in MW)	Phase 1 (2016-2022)	Phase 2 (2023- 2032)	Phase 3 (2033-2042)							
Khushkhera- Bhiwadi- Neemrana ¹⁶	955	1837	3877							
Jodhpur Pali Marwar ¹⁷	11571	64183	269000							

¹⁶ Final development plan – Khushkhera - Bhiwadi- Neemrana Investment Region, August 2014

¹⁷ Master Plan-2042, For Jodhpur-Pali-Marwar Industrial Area, Rajasthan Sub Region of DMIC

The projects in Rajasthan have faced considerable delay in land acquisition which started in 2012. Even after five years, the process has not been completed. Due to the delay in execution, the load as envisaged in Phase 1 of the project is expected to impact post the year FY 2026-27 with the assumption that the complete demand as planned will be required. Nominal growth rate has been considered for projection upto the year FY 2032. Due to the delay, the core development is expected to happen post 2032.

8.9.6. Rajasthan State Industrial Development and Industrial Corporation (RIICO)

RIICO is an apex organization engaged in fostering the growth of industrialization in the State. The mission of RIICO is to catalyze planned and rapid industrialization of Rajasthan. RIICO develops industrial areas and infrastructure facilities for the industrial units. During the Financial Year 2016-17, RIICO has acquired 1,513.58 acres of land and has developed 248.98 acres of land upto December, 2016.

Few of the recent developments by RIICO are:

- Japanese park: RIICO has signed a MOU with JETRO, a Japanese Organization wherein Japanese companies will set up their industrial units at Neemrana Industrial Area, Alwar, Rajasthan. Several multinational companies such as Nissin, Mitsui, Daikin, Mitsubishi and Dainichi have already got land allotted in this industrial area for establishing their units. RIICO has so far allotted 433 acre land to 47 Japanese companies in this area. Out of it, 43 companies have started commercial production as of FY 17.
- Korean Investment Zone: RIICO has signed a MoU with Korea Trade Investment Promotion Agency (KOTRA). In pursuance of this MoU, a Korean Investment Zone in Ghiloth Industrial Area, District Alwar has been set up covering an area of 2000 acres.
- ShahajanpurNeemrana-Behror (SNB) knowledge city cum urban complex of around 1500 acre
- Mahindra group has established an SEZ in partnership with RIICO in Jaipur with an expected investment of `10,000 crore. In this SEZ, various zones shall be established for industrial units of different sectors.

The officials of RICCO were consulted to understand the industrial activities in the State. Some of the observations are

- Industrial activity in the state is growing at historical natural growth rates and is not expected to pick up suddenly
- Most of the SEZ, Areas under RICCO have electrical infrastructure developed. However, actual demand has not been there as new industries have not developed as had been expected
- In the year FY 2016-17, for a target of 2542 acre, only about 10% of the area i.e. 248.98 has been developed due to subdued industrial activity

Considering the above, no additional electricity demand has been added. The growth rates considered in developing the base forecast reflects the views expressed by RICCO.

The anticipated additional electricity demand as anticipated from FY 21 to be added are as given below:

	nicipated	a energ	yrequir		ML		i uemai		new pr	ojecis a		ever
Head	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Housing	38	77	115	154	192	230	269	307	346	384	422	461
Master Plan	-	-	-	-		1079	1187	1305	1436	1579	1737	1911

Table 51: Anticipated energy requirement due to additional demand from new projects at State level

Jaipur Metro	-	-	-	-	-	-	-	-	-	29	29	29
Smart City	-	-	-	-	-	-	-	-	-	-	-	-
DMIC	-	-	-	-	-	120	127	135	143	152	161	171
RIICO	-	-	-	-	-	-	-	-	-	-	-	-
Total	38	77	115	154	192	1429	1583	1748	1925	2144	2349	2571

8.10. Assessment of latent demand

Development of reasonable estimate for the latent demand in the system has been attempted. The trend of historical consumption of electricity may or may not be a reliable indicator of the future trend of electricity consumption. Latent demand is the desire to consume a product or service but due to various barriers, the desire is not met and the consumption is curtailed. In developing economies there are various factors which may limit electricity consumption. These can range from inadequate infrastructure such as network capacity constraints, negative effect of income, high cost of supply, outdated technology etc.

Considering the case of a household with low income, consumption is based on priority of basic needs, thereby impacting demand of other goods e.g. electricity. For an industry, the electricity demand may be suppressed due to factors such as inadequate network infrastructure, insufficient power availability with distribution licensee to cater to the demand, high cost of supply, reliability of supply etc.

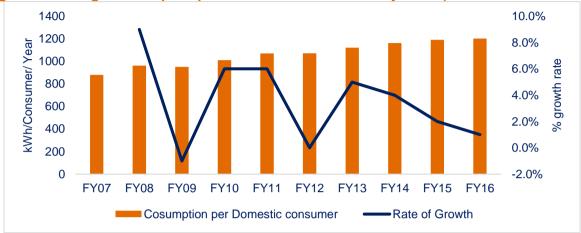
Latent demand is an inherent demand but is not reflecting due to the following reasons:

- Unmet the demand from the unconnected consumers, which is present but is not realized currently due to network, infrastructure issues, lack of policy focus etc.
- Unserved consumers are connected but complete demand is not met due to network restrictions, load curtailments, unreliable supply and deficit in electricity availability etc.
- **Behavioral** Even with the given supply, the consumers are not realizing the full potential due to behavioral usage issues.

In the following subsections, the assessment of demand has been carried out for each of the heads as mentioned above:

1. Unmet demand

The demand from unconnected consumers constitutes a substantial portion of unrealized electricity requirement in the system and remains latent unless connected. Availability of affordable and clean energy has been included as one of the 17 Sustainable Development Goals (SDGs) of the United Nations, adopted at the UN Sustainable Development Summit, September 2015. One of the targets under this goal is to ensure by 2030, universal access to affordable, reliable and modern energy services. In this direction, the Government has also undertaken steps to ensure that electricity access is provided.

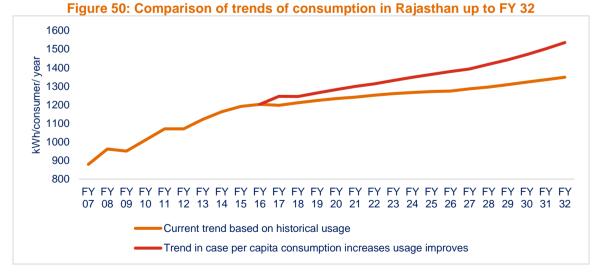

In this respect, the demand from additional connections to be released has been already been considered in the base forecast which has been developed.

2. Unserved demand

The assessment of unserved demand to consumers has been carried in the section of baseline correction of historical data wherein feeder interruption data has been used to estimate the demand curtailment. In case that curtailment had not happened, the unserved latent quantum would have reflected in the system. The methodology undertaken and the assumptions considered has already been explained in the section on baseline correction.

3. Behavioral aspect

The figure below shows the average historical consumption of electricity per domestic consumer in the state. While the overall consumption has been increasing, however the rate of growth has been dismal and not in line with the growth prevalent in developing countries.



This may be due to unreliable power supply or high tariffs etc. to some extent, but the major aspect is pertaining to usage behavior of the connected consumers. The trend has been similar for the country as a whole wherein the average consumption per consumer has been reported as 1010 kWh/consumer/ year in FY 2014-15 and 1075 kWh/consumer/ year for FY 2015-16¹⁸.

A comparison with other developing countries (e.g. BRICS considered for comparison) shows that overall India's per capita consumption is very low and is even below the World average of 2674 kWh/consumer/year.

Hence the usage behavior is not reflecting the demand which should have been in comparison to a global average or with respect to comparable economies. That difference is a latent aspect of demand due to behavioral usage and can only be realized with change in behavior or by incentives.

For assessing the latent demand, an analysis of the average consumption per consumer per year as forecasted in the base forecast using trend method has been analyzed.

¹⁸ CEA Monthly report December 2017

Historically, over the 10 year period, average CAGR in consumption per consumer for the state has been about 3.6%. In the base forecast, the same has already been considered and projected.

However, for the latent consumer demand to start realizing, that the current rate of growth has to increase as the economy progresses. But changes related to behavior doesn't happen all of a suddenly in a period of 1-3 years and such effects are noticeably observed over long term horizons.

Hence for the present scenario, to arrive at an assessment of the latent demand, the following assumptions have been considered

- The current CAGR growth rate of 3.6% has been assumed to increase by 10% YoY from FY 18. Since there is no definite literature available pertaining to latent demand, the assumption has been considered based on a realistic scenario
- The assumption is also reflective of the fact that in case the CAGR growth improves, it will be gradual over short term
- Based on the above assumption, the YoY growth rate has been arrived at for all the years.
- The difference in consumption per consumer has been worked out for the base case (historical) and case wherein increased CAGR growth rate is considered.
- The difference upon multiplication with the number of domestic consumers gives the additional latent demand which would be incident on the system.

FY17													FY30		FY32
-	273	389	533	728	850	1089	1368	1690	2052	2354	2800	2324	2764	3285	3906

Table 52: Estimated latent demand due to behavioral aspect for Rajasthan (in MUs)

8.11. Impact of Energy Efficiency

The assessment of the impact of energy efficiency has been carried out using efficiency factors for different categories while developing the forecast. To decide on the factors, various literature were reviewed to understand the actual impact of efficiency across various consumer categories. However, most of the study reports highlight potential of energy efficiency across major categories which are worked out based on estimates and assumptions. There was also a wise variation in the savings potential reported due to the inherent assumptions and methodologies adopted. The potential is also dependent on the quantum of investment and replacements which are required to achieve the same.

The energy savings potential across different consumers categories are as given:

	Table 53: Electricity Savings potential across categories ¹⁹								
SI. No.	Consumer category	Electricity savings potential							
1.	Domestic urban	15-20%							
2.	Domestic rural	40-50%							
3.	Commercial buildings	20%							
4.	Public lightings	50%							
5.	Agriculture	30%							
5.	PWW	20-25%							
6.	Industry	7-10%							

¹⁹ BEE, NPC study 2009 and EESL study

With these benchmarks in place, a realistic approach was considered and the share of demand to be impacted by energy efficiency was worked out. A YoY increase in % share has been considered with assumption that the impact will increase as we progress over the years. The awareness towards efficiency will increase and there will be more penetration and acceptance of energy efficiency products. The following table provides the YoY % of energy efficiency considered across categories.

Table 54: % savings estimated due to energy efficiency											
Category	FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24			
Domestic	2.0%	2.3%	2.6%	3.0%	3.5%	4.0%	4.6%	5.3%			
Non-Domestic	1.0%	1.1%	1.1%	1.2%	1.2%	1.3%	1.3%	1.4%			
PSL	1.0%	1.2%	1.4%	1.7%	2.1%	2.5%	3.0%	3.6%			
Agri	1.0%	1.1%	1.1%	1.2%	1.2%	1.3%	1.3%	1.4%			
Industry	0.5%	0.5%	0.5%	0.5%	0.6%	0.6%	0.6%	0.6%			
PWW	1.0%	1.1%	1.2%	1.3%	1.5%	1.6%	1.8%	1.9%			
Mixed load	1.0%	1.1%	1.1%	1.2%	1.2%	1.3%	1.3%	1.4%			

Category	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32
Domestic	6.1%	7.0%	8.1%	9.3%	10.7%	12.3%	14.2%	16.3%
Non-Domestic	1.5%	1.6%	1.6%	1.7%	1.8%	1.9%	2.0%	2.1%
PSL	4.3%	5.2%	6.2%	7.4%	8.9%	10.7%	12.8%	15.4%
Agri	1.5%	1.6%	1.6%	1.7%	1.8%	1.9%	2.0%	2.1%
Industry	0.6%	0.7%	0.7%	0.7%	0.7%	0.7%	0.8%	0.8%
PWW	2.1%	2.4%	2.6%	2.9%	3.1%	3.5%	3.8%	4.2%
Mixed load	1.5%	1.6%	1.6%	1.7%	1.8%	1.9%	2.0%	2.1%

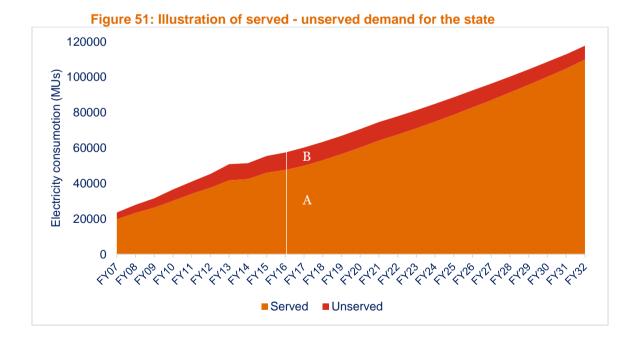
8.12. Development of forecast scenarios

The forecasts have been developed with two scenarios:

 Scenario 1: Forecast using baseline corrected data – unrestricted forecast (Served + Unserved)

Since the baseline of the historical (served or restricted) data had been corrected by adding the unserved demand (derived from feeder data), the forecasts arrived at for this Scenario is unrestricted forecast i.e. the forecast of the future years contains demand from both served and unserved units. The scenario is reflective of the case when all the unserved demand currently not served by the utilities is fulfilled by way of no interruption of supply, no curtailments etc. This scenario is also useful in case uninterrupted supply is provided to consumers e.g. 24 hours for domestic, 8 hours for agriculture etc.

Scenario 2: Forecast after adjusting for anticipated unserved demand in the future

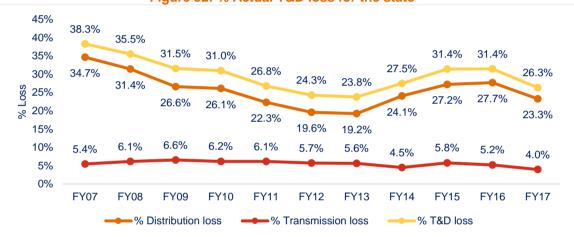

Scenario 2 = Scenario 1 - Future unserved demand

In this scenario, it has been assumed that although with improvement in the supply situation and infrastructure, the share of unserved demand will decrease progressively. However, the reduction will be more gradual and hence across the states/ circles, there will be some amount of unserved demand that will remain, even though overall, there will be a net decrease. The unserved demand for the forecast period has been derived by considering an improving trend of supply hours. It has been assumed that the supply hours will improve by 1% w.r.t previous year. The unserved demand derived for the forecast period has been subtracted from the unrestricted forecast results to arrive at future restricted results.

The Scenario 2 has been derived by continuing with the same assumption that the gap in supply hours will decrease by 1% YoY from FY 2016-17. It was observed that while in some urban circles like JPDC etc. the unserved demand will be nil for domestic categories, in other circles certain % will remain. The resultant net unserved demand for each Circle have been calculated and subtracted from the unrestricted forecast results.

The figure below highlights an illustration of the same

- A = Served or Restricted demand
- B = Unserved demand
- Scenario 1 = A + B
- Scenario 2 = A = Scenario 1 B


8.13. Estimation of the future loss trajectory

One of the gap identified in estimation of loss trajectory is that the trajectories are developed based on top down targets. Historically, it has been observed that the targets are not met as per the defined timelines and are also periodically revised. Due to which the overall forecasted results vary with that of the actual. Hence in the present section, the future loss trajectories have been estimated based on realistic estimates after analysis of the actual loss data.

The data accessed from the utilities have yearly wise % of distribution loss, transmission loss and transmission and distribution loss figures. The data doesn't have any segregation of losses for specific activities like theft, faulty reading etc.

In the current assignment, the trajectory has been developed based on analysis of available data, trends observed and realistic assumptions after consultation.

For the state, the historical losses are given in the following table

The estimation of loss trajectory has been carried out after considering the following points:

- The state has a target to achieve distribution loss target of 15% upto FY19 whereas at the end of FY17, the actual distribution loss achieved is 23.3%. As per estimates, the state is expected to reach the distribution loss level of 19.3% by end of FY18.
- It has been highlighted that the reduction of loss from 25% to 20% is possible at a faster rate because same can be achieved by monitoring thefts, leakages and by ensuring metering. However, the reduction below 20% to 15% will be more gradual and require investment in improving the network infrastructure. Reduction below 15% distribution loss at a state level is not envisaged as of now.
- The transmission loss has ranged between 5-6% in the past 10 years and any further reduction will be very gradual and may reach a limit of 3% for the state.

Keeping in mind the above, the projected trajectory for the state is given as below:

	Table 55: Projected loss trajectory for the state													
Category	Category FY17 FY18 FY19 FY20 FY21 FY22 FY23 FY24													
Distribution %	23.3%	20.0%	19.0%	18.0%	17.0%	16.0%	15.0%	15.0%						
Transmission %	4.0%	5.2%	5.0%	4.8%	4.6%	4.4%	4.2%	4.1%						

²⁰ Data accessed from distribution utilities

Alternate methodology for Electricity demand assessment and forecasting

T&D %	26.3%	23.5%	24.0%	22.8%	21.6%	20.4%	19.2%	19.1%

Category	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY 32
Distribution %	15.0%	15.0%	15.0%	15.0%	15.0%	15.0%	15.0%	15.0%
Transmission %	3.9%	3.8%	3.6%	3.5%	3.3%	3.2%	3.1%	3.0%
T&D %	18.9%	18.8%	18.6%	18.5%	18.3%	18.2%	18.1%	18.0%

Based on the above T&D losses worked out for each year, energy requirement for the state has been calculated using the following given below.

Energy requirement = Forecasted Energy consumption / (1- T&D Loss %)

In the table below, energy requirement for the state has been calculated considering the results derived using Trend – restricted method. Similarly, results from other methods can also be calculated.

	Tab	ole 56: Calc	ulation of e	nergy requ	irement for	the state		
Category	FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24
Electricity consumption	55,383	57,634	61,931	66,609	71,720	75,845	80,265	84,891
T&D Loss %	26.3%	23.5%	24.0%	22.8%	21.6%	20.4%	19.2%	19.1%
Electricity requirement	75,169	75,376	81,479	86,272	91,480	95,302	99,387	104,895

Table 56: Calculation of energy requirement for the state

Category	FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24
Electricity consumption	89,706	96,011	101,052	106,476	111,024	116,655	122,604	129,568
T&D Loss %	18.9%	18.8%	18.6%	18.5%	18.3%	18.2%	18.1%	18.0%
Electricity requirement	110,622	118,169	124,144	130,577	135,924	142,586	149,624	158,009

8.14. Estimation of load factor and peak demand

Load Factor is the ratio between average energy consumption rate (average load) and peak energy consumption rate (peak load) over a specified period of time and can apply to daily, monthly, seasonal or annual periods.

In the present case, the bottom up approach entailed undertaking forecasts at circle levels and then aggregating upto the utility and state level. To estimate the peak demand that may be incident on the system for the forecast years, commonly used forecasting methodologies assume average load factor and then peak demand is derived which is a co-incident peak demand.

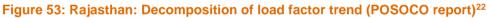
In this section two approaches have been used:

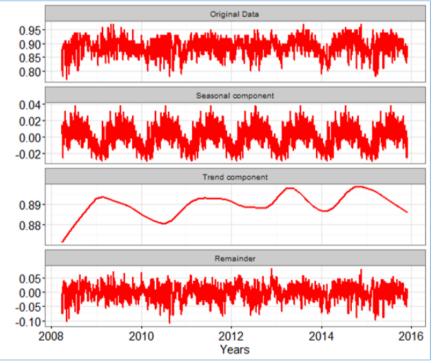
 Traditional approach: in this approach, the load factor on an average yearly basis is worked out based on historical average load factor data and then peak demand is derived using the energy requirement (forecasted) and load factor using the following

Peak Demand (MW) = Electricity required (MUs) / (Load Factor x Time in hours)

Depending on the period (daily, monthly, annual etc.) for which the calculation is made, the peak demand can be derived.

• Forecasting approach: to determine peak demand by forecasting methods using historical peak demand data


1. Traditional approach


In this approach, the year wise load factor data was accessed and analyzed to understand the trend. For the state of Rajasthan, the following table provides the yearly data

			Tab	<u>le 57: Ra</u>	jasthan:	Load fac	ctor data	21		
State	FY09	FY10	FY11	FY12	FY13	FY14	FY15	FY16	Monthly LF, avg. of 2008-15	Daily LF, avg. of 2008-15
Rajasthan	0.69	0.68	0.70	0.73	0.71	0.69	0.71	0.70	0.80	0.89

As per the results of the study conducted by POSOCO, the load factor in the state in increase. The same is already evidenced from the decomposition of the monthly data provided in the same report.

The figure below shows the increase in trend of load factor for the state.

²¹ Electricity load factor in Indian Power System, POSOCO, January 2016

²² Electricity load factor in Indian Power System, POSOCO, January 2016, available in public domain

In view of the trend observed, a nominal increasing trend has been considered, derived from past historical load factor data and projected to arrive at the average load factor for the state

				Fi	gure 54	4: Estin	nated lo	oad fac	tor for	the sta	te				
FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32
0.702	0.704	0.706	0.708	0.711	0.713	0.715	0.717	0.719	0.721	0.723	0.726	0.728	0.73	0.732	0.734

Using the load factors derived as above, the co-incident peak demand of the state was determined using the formula provided. The table below provides the annual coincident peak demand calculated using the trend – restricted approach using the electricity forecast and load factor as determined above.

	1	Table 58	<u> 3: Annu</u>	al Peak	deman	d for st	ate: Us	ing fore	ecasting	g result	s using	Trend	method		
FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	Fy27	FY28	FY29	FY30	FY31	FY32
12224	12222	13175	13910	14688	15258	15868	16701	17563	18710	19601	20532	21314	22297	23334	24574

Similarly, peak demand derived for all the scenarios is given in the section on summary electricity forecast results.

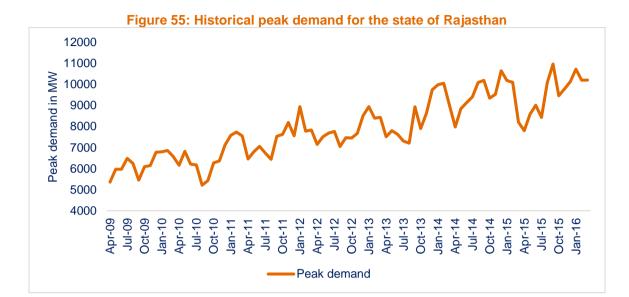
The next step is to use a diversity factor to further normalize the demand as it will be unlikely that all the demand will be coincident on the system at the same time. As per the report by POSOCO, diversity factor recognizes that the whole load does not equal the sum of its parts due to time interdependence. The concept of being able to derate a potential maximum load to an actual maximum demand is known as the diversity factor.

Diversity factor can be represented as follows

Diversity factor = (sum of individual maximum demand)/ (simultaneous max. demand)

The POSOCO report provides yearly historical data for diversity factor for the Western region of the country as a whole. The diversity factor for the western region is in the range of 1.02 to 1.06 for the period FY 2009-14. The report doesn't provide any trend of diversity factor for the region/ state nor monthly data for could be accessed to analyze and consider a trend. Due to the lack of data and trend available, diversity factor has not be considered to arrive at the diversity adjusted peak demand for the state.

2. Direct forecasting approach


In this approach, monthly historical peak demand data for the state from the year FY 2009-10 to FY 2016-17 has been considered and using statistical forecasting methods, the forecast of expected peak demand for the state has been derived. The present method is not reliant on energy requirement or load factor values and is based on past seasonality and trends. The table below provides the historical peak demand of Rajasthan

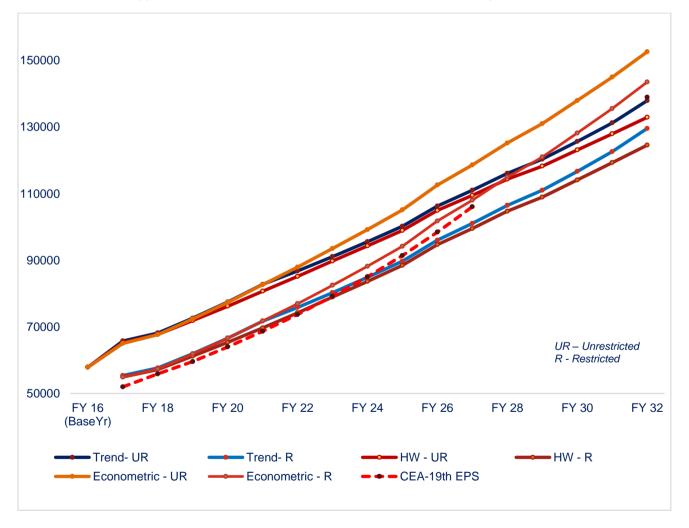
			l able :	59: Unre	stricted	peak den	and of H	kajasthai	n²³			
	April	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
FY10	5364	5971	5968	6487	6240	5453	6087	6143	6771	6798	6859	6567
FY11	6159	6821	6215	6171	5211	5426	6275	6361	7116	7582	7729	7549
FY12	6452	6800	7054	6736	6443	7536	7627	8188	7556	8940	7779	7827
FY13	7143	7511	7686	7765	7044	7464	7454	7671	8511	8940	8396	8433
FY14	7512	7799	7626	7306	7206	8929	7899	8627	9735	9977	10047	9000
FY15	7977	8844	9131	9403	10087	10188	9339	9525	10642	10179	10095	8199

23 Source: NRPC, available in public domain

Alternate methodology for Electricity demand assessment and forecasting

FY16	7798	8577	9010	8431	10080	10961	9453	9780	10123	10720	10190	10200
FY17	9027	9690	9906	9288	7807	9816	10000	10300	10700	11300	11100	10600

The data highlights that there is a trend and a seasonal component in the peak demand and it is important that such trends are captured using forecasting methods. Also, there is a wide variation in the peak demand across months. In FY 17, the peak demand was maximum during January and minimum in August. To ensure that such trends and seasonality are reflected in the forecast, the Holt-Winter's method was used to forecast the monthly peak demand in the state for the forecast period. The monthly forecast results are provided in the table below:


 Table 60: Monthly peak demand for the state determined using forecasting methods

MW	April	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
FY18	10001	10386	10601	9327	8716	11275	11569	11032	11443	12267	11934	12533
	10001			3321								
FY19	11966	12488	12794	12000	11785	14137	14080	13782	14244	14927	14576	14593
FY20	13317	13826	14118	13314	13088	15431	15365	15059	15513	16189	15832	15841
FY21	14506	15013	15303	14496	14267	16608	16540	16232	16684	17358	16999	17008
FY22	15643	16149	16439	15631	15403	17743	17675	17366	17818	18492	18133	18142
FY23	16759	17266	17556	16749	16521	18861	18794	18486	18939	19613	19255	19264
FY24	17869	18377	18668	17862	17634	19976	19909	19603	20056	20731	20374	20384
FY25	18981	19489	19781	18977	18750	21093	21028	20722	21177	21853	21497	21508
FY26	20098	20608	20901	20098	19873	22217	22153	21848	22304	22982	22627	22639
FY27	21224	21735	22030	21228	21004	23349	23286	22983	23440	24119	23766	23779
FY28	22361	22873	23169	22368	22146	24492	24431	24129	24587	25268	24915	24930
FY29	23508	24022	24319	23520	23299	25647	25587	25286	25746	26428	26077	26093
FY30	24668	25183	25482	24684	24464	26814	26755	26456	26917	27600	27250	27268
FY31	25841	26357	26657	25861	25642	27993	27936	27638	28100	28785	28436	28455
FY32	27026	27544	27846	27050	26833	29185	29129	28833	29297	29982	29635	29655

8.15. Finalization of forecast results

The forecast developed using multiple methods have been finalized as per the following steps:

- Unrestricted forecast were developed for the three utilities using the three methods (Scenario 1). Such forecasts have been developed at a Circle level and aggregated to arrive at the utility level forecast
- From the unrestricted forecast, quantum of unserved demand (as explained in Scenario 2) have been subtracted for each circles across the consumer categories to arrive at the restricted forecast. The restricted forecast for each Circles were then summed up to arrive at the forecast at the distribution utility level and subsequently at the state level.
- The results obtained for Scenario 1 and Scenario 2 were based on bottom up approach. Since additional demand like electricity consumption from infrastructure, open access and captive, electric vehicles, latent demand, demand from railways etc. have been calculated separately, such demands were then added to the aggregated utility demand to arrive at the total electricity consumption forecast for the state.
- Forecasted electricity consumption for the state = Demand from three Utilities + Additional demand
- The above approach was used to arrive at the state demand for all the options and scenarios.

The derived results were then compared with that of actual data. The following table provides a comparison of the forecast values at restricted (R) level with that of actual data (from Utilities) for the base year FY 17.

FY 17		JVVNL			AVVNL			JdVVNL			State*	
Method	Actual (MUs)	For. (MUs)	Varia- tion									
Trend -R	18496	18897	2.2%	13786	13785	0.0%	17732	17700	-0.2%	50015	50382	0.7%
HW-R	18496	19045	3.0%	13786	14110	2.4%	17732	17260	-2.7%	50015	50415	0.8%
Econometric - R	18496	18844	1.9%	13786	14054	1.9%	17732	17570	-0.9%	50015	50468	0.9%

* State demand cumulative of 3 DISCOMs, excluding additional demand

- The variation for the restricted demand condition (Scenario 2) is in the range of 0-3%. Since the forecast for Scenario 1 is higher than that of Scenario 1, the variation will be more in case of Scenario 1.
- The restricted energy consumption forecasted at state level was then grossed up by T&D losses to arrive at the energy required at the state boundary.

8.16. Validation of results with traditional methodologies

For validation of the forecast results, the forecast developed by CEA in the 19th EPS has been used. CEA in the 19th EPS has provided year wise forecast for the period FY 2015-16 to FY 2026-27 and also perspective electricity demand projections for the years FY 2031-32 and FY 2036-37.

In the following table, the comparison of forecast results with results of CEA is shown for comparison.

	FY16											
Year	(Base Year)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27
UR-Tr	57855	65737	68146	72609	77453	82745	86783	91088	95563	100188	106261	111004
			3.7%	6.5%	6.7%	6.8%	4.9%	5.0%	4.9%	4.8%	6.1%	4.5%
R-Tr		55383	57634	61931	66609	71720	75845	80265	84891	89706	96011	101052
			4.1%	7.5%	7.6%	7.7%	5.8%	5.8%	5.8%	5.7%	7.0%	5.3%
UR- Eco	57855	65015	67673	72353	77301	82636	87935	93513	99186	105129	112577	118613
			4.1%	6.9%	6.8%	6.9%	6.4%	6.3%	6.1%	6.0%	7.1%	5.4%
R- Eco		54906	57361	61849	66615	71763	76947	82472	88169	94188	101782	108036
			4.5%	7.8%	7.7%	7.7%	7.2%	7.2%	6.9%	6.8%	8.1%	6.1%
HW		54942	57186	61197	65328	69667	74203	78936	83629	88473	94694	99521
			4.1%	7.0%	6.8%	6.6%	6.5%	6.4%	5.9%	5.8%	7.0%	5.1%
CEA	48017	51971	55872	59573	63962	68648	73709	79184	85025	91399	98449	106051
			7.5%	6.6%	7.4%	7.3%	7.4%	7.4%	7.4%	7.5%	7.7%	7.7%

- The results developed using the forecast methodologies are inclusive of additional demand i.e. Open Access & Captive, Railways, Electric vehicles, Delhi Mumbai Industry Corridors, Master Plan of cities, Latent demand, Housing schemes, Metro rail etc. While CEA in their study has also considered some of the additional demand, however state specific additions could not be determined separately from the results of 19th EPS.
- The higher demand in FY17 in comparison to CEA results is also due to higher actual demand from Open access consumers in the state and due to addition of latent demand, which is not included in 19th EPS.
- From the results it can be concluded that the forecast using traditional approach is comparable to the electricity consumption requirement developed under the restricted condition (Scenario 2).
- The forecast results arrived at for unrestricted condition (Scenario 1) is higher is comparison to the results presented in the 19th EPS. It can be concluded from the results that forecast using baseline corrected historical data (unrestricted condition) will lead to higher forecast results and may not represent a realistic case.
- Scenario 2 (as explained in earlier sections) is arrived at after subtracting the net unserved demand from the unrestricted forecast. The scenario is more reflective of the current situation.
- While the growth rates (YoY) in 19th EPS is more uniform. However, in alternate methodologies, this is not the case as the approach and methodology is different and also some of the methods used do not use YoY growth rates while arriving at the forecast results.

- Since the methodologies adopted are different, there will be difference in the results which are arrived at. Hence a direct validation of results using YoY growth rates or derived forecast values is not recommended.
- Following table provides a comparison for the year FY 32. The range of results obtained for the terminal year FY32 is also very broad and any of the results can be a possibility going forward.

		Table 63: Con	n <mark>parison of</mark> f	orecasts for year F	Y32 (MUs)	
	Trend - UR	Trend - R	HW-R	Econometric-R	Econometric-UR	19 th EPS
FY 32	137916	129568	124553	143496	152578	138933

The forecast of electricity demand for the state and the derived peak demand was compared with the results of 19th EPS. A comparative table is given below:

	Elect	ricity dem	hand	F	Peak demar	nd
	FY22	FY27	FY32	FY22	FY27	FY32
UR - Tr	17.7%	4.7%	-0.7%	20.9%	7.0%	-1.6%
R - Tr	2.9%	-4.7%	-6.7%	5.7%	-2.6%	-7.5%
UR - Eco		11.8%	9.8%	22.6%	14.3%	8.9%
R - Eco	4.4%	1.9%	3.3%	7.2%	4.1%	2.4%
HW	0.7%	-6.2%	-10.4%	3.4%	-4.1%	-11.1%

9. Summary of demand forecast results

The following results have been covered in this section:

- Forecasted electricity consumption for Scenario 1 (unrestricted) and Scenario 2 (restricted) condition for Rajasthan
- Derived YoY rates have been highlighted
- The results of 19th EPS has also been highlighted for the State and Utility level for comparison
- Forecasted electricity consumption Scenario 1 (unrestricted) and Scenario 2 (restricted) condition for three utilities – JVVNL, AVVNL, JdVVNL
- Forecasted electricity consumption (restricted condition) for each of the 26 circles
- The results developed from each of the three methods for each case as mentioned above

9.1. Rajasthan – Forecast summary

9.1.1. Forecast of Electricity consumption

(MUs)	Scenario	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	UR-Tr	12574	13488	14430	15389	16356	17263	18136	18953	19695	20340	21001	21543	21970	22315	22655	23159
	R-Tr	11278	12227	13219	14245	15275	16265	17239	18174	19050	19844	20655	21356	21860	22254	22655	23159
	UR-Eco	12473	13371	14298	15240	16196	17176	18167	19168	20177	21190	22176	23157	24118	25046	25900	26713
	R-Eco	11163	12097	13075	14085	15106	16164	17252	18369	19512	20680	21835	23016	24056	25010	25890	26713
	UR-HW	12222	13187	14037	14862	15665	16460	17231	17975	18688	19368	19990	20572	21086	21527	21864	22115
	CEA	11534	12548	13526	14563	15568	16603	17774	18982	20228	21626	23068	-	-	-	-	-
Non- Domestic	UR-Tr	5368	5785	6233	6715	7233	7692	8179	8693	9235	9807	10436	11101	11804	12546	13329	14161
	R-Tr	4270	4658	5080	5539	6037	6496	6987	7511	8070	8666	9323	10025	10776	11575	12427	13341
	UR-Eco	5272	5771	6300	6850	7432	7979	8558	9156	9781	10434	11077	11737	12425	13142	13889	14816
	R-Eco	4181	4633	5119	5632	6184	6717	7290	7888	8523	9195	9872	10576	11319	12102	12928	13937
	UR-HW	5128	5469	5819	6159	6503	6839	7181	7515	7847	8178	8517	8846	9175	9502	9829	10154
	CEA	4398	4883	5420	6075	6808	7628	8594	9685	10921	12370	14008	-	-	-	-	-
PSL	Tr	420	437	453	470	486	501	517	533	548	562	566	564	556	539	513	475
	Eco	447	460	498	538	579	620	663	707	753	800	847	896	944	991	1037	1082
	HW	458	500	541	581	620	659	696	733	768	800	832	860	884	905	920	929
	CEA	345	265	290	318	349	384	421	463	509	560	615	-	-	-	-	-
Agri (M+N+P)	UR-Tr	25496	27628	29937	32439	35150	37055	39048	41131	43304	45570	47735	49981	52306	54709	57189	60433
	R-Tr	18512	20334	22331	24520	26918	28751	30691	32743	34909	37195	39444	41804	44277	46863	49565	52985
	UR-Eco	25241	27422	29683	32003	34428	36819	39262	41732	44248	46820	49475	52127	54806	57503	60206	63037
	R-Eco	18274	20120	22075	24113	26285	28472	30755	33101	35534	38064	40722	43425	46204	49055	51968	55050

											_						
	UR-HW	25754	28003	30120	32204	34319	36397	38509	40581	42648	44711	46876	48932	50984	53031	55075	57114
	CEA	2 <u>17</u> 17	23308	24514	26154	27958	29946	31977	34109	36481	39038	41786	-	-	-	-	-
Agri (F)	UR-Tr	3508	3099	2746	2440	2174	1935	1733	1560	1411	1282	1158	1054	965	887	818	650
	R-Tr	2532	2268	2037	1835	1657	1495	1357	1237	1134	1043	955	880	815	758	707	569
	UR-Eco	2674	2234	1912	1718	1653	1620	1616	1540	1546	1557	1569	1590	1613	1640	1668	1699
	R-Eco	1932	1637	1421	1294	1262	1252	1266	1221	1241	1266	1292	1325	1360	1399	1440	1483
	R-HW	2916	2266	1907	1713	1649	1615	1612	1535	1541	1552	1565	1585	1609	1635	1664	1694
	CEA	In EPS, A	gri (F) is n	ot given se	parately												
Industry (S + M)	Tr	3098	3231	3371	3518	3673	3818	3969	4126	4289	4460	4631	4809	4994	5187	5387	5617
	Eco	3252	3395	3544	3700	3859	4028	4205	4388	4578	4768	4969	5175	5387	5603	5818	6043
	HW	3276	3422	3575	3734	3896	4069	4247	4430	4618	4805	5001	5201	5404	5610	5813	6025
	CEA	3160	3362	3575	3803	4045	4303	4577	4869	5179	5509	5860	-	-	-	-	-
Industry (L)	Tr	7721	8197	8707	9256	9847	10214	10594	10989	11398	11822	12317	12833	13372	13935	14522	15155
	Eco	8029	8584	9171	9747	10319	10912	11524	12158	12818	13493	14033	14784	15577	16415	17288	18234
	HW	7935	8457	8999	9516	10013	10515	11015	11515	12017	12507	12832	13333	13837	14345	14840	15354
	CEA	7771	8300	8867	9474	10123	10819	11564	12362	13216	14132	15113	-	-	-	-	-
PWW	Tr	1901	2004	2111	2224	2341	2400	2458	2515	2571	2624	2668	2709	2746	2778	2806	2810
	Eco	1942	2075	2212	2353	2499	2655	2817	2992	3175	3368	3577	3800	4044	4300	4582	4885
	HW	1924	2034	2143	2252	2357	2463	2567	2672	2775	2873	2974	3071	3170	3263	3357	3448
	CEA	1916	2037	2173	2328	2506	2694	2902	3134	3396	3690	4018	-	-	-	-	-
Mixed Load	Tr	649	665	682	699	716	726	737	748	759	770	781	791	802	813	824	835
	Eco	683	746	796	850	901	947	983	1029	1076	1124	1175	1231	1281	1338	1394	1446
	HW	683	746	796	850	901	947	983	1029	1076	1124	1175	1231	1281	1338	1394	1446

	CEA	676	698	717	737	759	780	802	825	848	872	896			_		
	ULA	070	030	/ 1/	131	133	700	002	020	040	072	090	_				
Total for Utilities	UR-Tr	60736	64533	68671	73151	77975	81605	85371	89247	93210	97236	101292	105385	109515	113710	118042	123294
			6.3%	6.4%	6.5%	6.6%	4.7%	4.6%	4.5%	4.4%	4.3%	4.2%	4.0%	3.9%	3.8%	3.8%	4.4%
	R-Tr	50382	54021	57993	62306	66950	70666	74548	78575	82727	86986	91340	95772	100198	104703	109406	114946
			7.2%	7.4%	7.4%	7.5%	5.6%	5.5%	5.4%	5.3%	5.1%	5.0%	4.9%	4.6%	4.5%	4.5%	5.1%
	UR-Eco	60576	64736	69189	73929	78970	84072	89326	94696	100331	106172	111974	118162	124548	131153	137969	145308
			6.9%	6.9%	6.9%	6.8%	6.5%	6.2%	6.0%	6.0%	5.8%	5.5%	5.5%	5.4%	5.3%	5.2%	5.3%
	R-Eco	50467	54423	58685	63243	68097	73084	78285	83679	89390	95376	101396	107891	114526	121388	128531	136226
			7.8%	7.8%	7.8%	7.7%	7.3%	7.1%	6.9%	6.8%	6.7%	6.3%	6.4%	6.1%	6.0%	5.9%	6.0%
	HW	49941	53573	57259	61026	64897	69025	73219	77313	81494	85669	89810	94018	98113	102149	106120	109931
			7.3%	6.9%	6.6%	6.3%	6.4%	6.1%	5.6%	5.4%	5.1%	4.8%	4.7%	4.4%	4.1%	3.9%	3.6%
	CEA	51971	55872	59573	63962	68648	73709	79184	85025	91399	98449	106051	-	-	-	-	138933
			7.5%	6.6%	7.4%	7.3%	7.4%	7.4%	7.4%	7.5%	7.7%	7.7%					
Addl. Consumpt ion to be added to above		5001	3613	3938	4303	4770	5178	5717	6316	6979	9025	9712	10704	10826	11952	13198	14622
Total for State	UR-Tr	65737	68146	72609	77453	82745	86783	91088	95563	100188	106261	111004	116090	120342	125662	131240	137916
			3.7%	6.5%	6.7%	6.8%	4.9%	5.0%	4.9%	4.8%	6.1%	4.5%	4.6%	3.7%	4.4%	4.4%	5.1%
	R-Tr	55383	57634	61931	66609	71720	75845	80265	84891	89706	96011	101052	106476	111024	116655	122604	129568
			4.1%	7.5%	7.6%	7.7%	5.8%	5.8%	5.8%	5.7%	7.0%	5.3%	5.4%	4.3%	5.1%	5.1%	5.7%
	UR-Eco	65015	67673	72353	77301	82636	87935	93513	99186	105129	112577	118613	125202	131020	137930	144980	152578
			4.1%	6.9%	6.8%	6.9%	6.4%	6.3%	6.1%	6.0%	7.1%	5.4%	5.6%	4.6%	5.3%	5.1%	5.2%
	R-Eco	54906	57361	61849	66615	71763	76947	82472	88169	94188	101782	108036	114931	120997	128165	135542	143496

										_						
		4.5%	7.8%	7.7%	7.7%	7.2%	7.2%	6.9%	6.8%	8.1%	6.1%	6.4%	5.3%	5.9%	5.8%	5.9%
HW	54942	57186	61197	65328	69667	74203	78936	83629	88473	94694	99521	104722	108939	114101	119318	124553
		4.1%	7.0%	6.8%	6.6%	6.5%	6.4%	5.9%	5.8%	7.0%	5.1%	5.2%	4.0%	4.7%	4.6%	4.4%
 CEA	51971	55872	59573	63962	68648	73709	79184	85025	91399	98449	106051	-	-	-	-	138933
		7.5%	6.6%	7.4%	7.3%	7.4%	7.4%	7.4%	7.5%	7.7%	7.7%					

Note:

- UR Unrestricted electricity consumption in MUs
- R Restricted electricity consumption in MUs
- Tr Trend method
- Eco Econometric method
- HW HoltWinters Method
- Additional consumption Open Access & Captive, Railways, EV, DMIC, Master Plans, Latent demand, Metro etc.
- The % shown are YoY growth rates derived from the forecast results.

Interpretation of forecast results

- The results developed using the forecast methodologies are inclusive of additional demand i.e. Open Access & Captive, Railways, Electric vehicles, expected infrastructure plans, Master Plan of cities, Latent demand, Housing schemes, Metro etc. While CEA in their study has also considered some of the additional demand, however state specific additions could not be determined separately from the results of 19th EPS.
- Higher demand in FY17 compared to CEA is due to baseline correction, actual demand from Open access, latent demand etc. that is not included in 19th EPS
- In the case of an unrestricted scenario forecast, the forecasted demand provides an estimate of the total consumer demand which may be incident on the system in case there is no unserved or unmet demand. In such a scenario, all consumers will be using electricity as per the potential and there is no demand, which is unserved due to any factors.
- In case of a restricted forecast, the forecasted demand provides an estimate of the consumer demand which will be incident on the system in case some consumers are still not electrified or required number of supply hours is not met for electrified consumers.

- Considering an example for econometric method, in the year FY17, the unrestricted forecast is 65015 MUs and restricted forecast is 54906 MUs. It implies that a demand of 10109 MUs (65015 54906) or 15.55% of unrestricted demand is not being served or met by the distribution utilities even though the demand existed. In FY 32, for the same method, a demand of 9082 MUs (152578 143496) or 6% of unrestricted demand will not be met. This also implies that an improvement in supply situation is envisaged thereby leading to improved meeting of consumer demand.
- Baseline correction has enabled forecasting of the unrestricted forecast, as otherwise only a restricted forecast would have been possible with the restricted historical data. The restricted forecast would only show that demand would increase from 54906 MUs in FY17 to 143496 MUs. With a restricted result, the total consumer demand cannot be inferred.
- Currently the planning for additional capacities is based on the demand forecasting results of EPS. Since the demand forecasting methodology adopted in EPS does not consider the baseline correction of historical data, the total consumer demand for future may not be captured fully since unmet, latent demand etc. are not considered currently. There may be variations between what is projected and the actuals which might occur. In a future scenario, electricity demand forecasting without baseline correction may lead to shortfall in reserve capacities. The shortfall will impact the reliability of supply to consumers in future. Therefore, adoption of alternate methodologies that can minimize such variations will lead to a better estimate and can then be used to plan for adequate reserves in the system. Planning of adequate reserves proactively would ensure that reliable and quality power may be supplied in future in line with Government's 24 x 7 Power for All (PFA) scheme.

				т	able 64:	Summary	of the e	ectricity	requirem	ent at sta	te level						
Scenario MUs	FY 16 (Base Yr)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
UR - Tr	84382	89223	89125	95528	100318	105543	109047	112788	118082	123548	130785	136371	142366	147331	153595	160163	168190
R - Tr		75169	75376	81479	86272	91480	95302	99387	104895	110622	118169	124144	130577	135924	142586	149624	158009
UR - Eco	84382	88242	88506	95191	100120	105404	110494	115792	122559	129641	138559	145718	153541	160404	168590	176932	186071
R - Eco		74522	75019	81372	86280	91535	96687	102120	108946	116148	125271	132724	140946	148134	156654	165414	174996
HW		74571	74791	80514	84614	88861	93240	97741	103335	109101	116548	122264	128426	133371	139464	145614	151893
CEA	69614	73222	76569	79485	83168	87051	91216	95782	101200	108808	117219	126290					161606
					Tab	le 65: Su	mmary o	f peak de	mand at s	state leve							
Scenario MW	FY 16 (Base Yr)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Load Factor	0.70	0.702	0.704	0.706	0.708	0.711	0.713	0.715	0.717	0.719	0.721	0.723	0.726	0.728	0.73	0.732	0.734
UR - Tr	11415	14509	14452	15446	16175	16946	17459	18007	18800	19616	20707	21532	22385	23102	24019	24977	26158
R - Tr	11415	12224	12222	13175	13910	14688	15258	15868	16701	17563	18710	19601	20532	21314	22297	23334	24574
UR - Eco	11415	14349	14352	15392	16143	16923	17691	18487	19513	20583	21938	23008	24143	25152	26364	27592	28939
R - Eco	11415	12118	12165	13157	13911	14696	15480	16304	17346	18441	19834	20956	22162	23228	24497	25796	27216
HW	11415	12126	12128	13019	13643	14267	14928	15605	16452	17322	18453	19304	20194	20913	21809	22708	23623
CEA	10961	11535	12070	12540	13133	13761	14435	15176	16048	17282	18651	20131					26575

9.2. Forecast at DISCOM level

9.2.1. JVVNL – Forecast of electricity consumption

(MUs)	Scenario	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	UR-Tr	5,225	5,622	6,038	6,471	6,921	7,350	7,785	8,223	8,665	9,112	9,581	10,081	10,642	11,321	12,208	13,452
	R-Tr	4,761	5,172	5,609	6,069	6,531	6,979	7,438	7,907	8,385	8,876	9,386	9,930	10,532	11,259	12,208	13,452
	UR-Eco	5245	5630	6028	6440	6867	7309	7767	8243	8738	9253	9785	10339	10918	11523	12157	12830
	R-Eco	4783	5188	5613	6059	6505	6969	7456	7966	8502	9064	9640	10255	10856	11487	12148	12830
	UR-HW	5051	5402	5753	6105	6456	6808	7159	7510	7862	8213	8564	8916	9267	9619	9970	10321
	CEA	4838	5271	5717	6148	6568	7000	7466	7946	8441	8973	9522	-	-	-	-	-
Non- Domestic	UR-Tr	2,597	2,757	2,925	3,103	3,289	3,479	3,679	3,889	4,109	4,339	4,573	4,817	5,072	5,337	5,612	5,897
	R-Tr	2,092	2,248	2,415	2,592	2,780	2,975	3,181	3,400	3,631	3,876	4,130	4,397	4,678	4,973	5,283	5,608
	UR-Eco	2602	2826	3060	3304	3559	3818	4090	4373	4669	4979	5290	5615	5955	6309	6679	7093
	R-Eco	2095	2303	2523	2756	3003	3259	3530	3816	4120	4441	4770	5117	5484	5871	6280	6737
	UR-HW	2550	2721	2883	3042	3199	3354	3508	3661	3813	3964	4115	4266	4416	4565	4715	4864
	CEA	2117	2275	2441	2642	2856	3084	3351	3636	3942	4296	4675	-	-	-	-	-
PSL	Tr	184	189	195	199	204	200	196	191	185	178	169	159	147	133	118	102
	Eco	207	226	246	267	289	313	338	364	393	423	456	492	530	572	617	667
	HW	213	232	250	269	287	305	324	342	361	379	397	416	434	453	472	490
	CEA	155	122	131	141	152	163	176	189	204	220	236	-	-	-	-	-
Agri (M+N+P)	UR-Tr	7,700	8,164	8,652	9,166	9,705	10,254	10,832	11,439	12,075	12,741	13,423	14,134	14,877	15,651	16,456	17,291
	R-Tr	5,600	6,018	6,463	6,937	7,440	7,967	8,527	9,122	9,754	10,423	11,118	11,853	12,629	13,447	14,308	15,213
	UR-Eco	7890	8548	9216	9892	10573	11231	11884	12528	13157	13765	14345	14888	15383	15819	16182	16497
	R-Eco	5750	6312	6896	7498	8119	8734	9358	9989	10621	11249	11867	12465	13036	13566	14044	14490

											_						
	UR-HW	8405	9063	9720	10378	11035	11692	12350	13007	13664	14321	14978	15635	16292	16949	17606	18263
	CEA	<u>61</u> 01	6366	6473	6861	7240	7580	7916	8268	8683	9102	9528	-	-	-	-	-
Agri (F)	UR-Tr	632	546	472	409	354	279	220	173	136	107	74	51	35	24	16	11
	R-Tr	444	390	342	299	263	210	168	134	107	85	59	41	29	20	14	10
	UR-Eco	105	87	68	57	55	55	54	53	53	52	47	49	50	51	53	54
	R-Eco	77	64	52	44	44	44	44	44	44	44	40	42	44	45	47	49
	UR-HW	357	126	68	57	55	55	54	53	53	52	47	49	50	51	53	54
	CEA	In EPS, A	gri (F) is n	ot given se	parately												
Industry (S + M)	Tr	1,068	1,101	1,136	1,171	1,207	1,248	1,290	1,333	1,378	1,424	1,471	1,520	1,571	1,622	1,676	1,731
	Eco	1209	1242	1277	1316	1358	1404	1453	1505	1559	1614	1671	1728	1785	1843	1900	1955
	HW	1219	1268	1322	1381	1445	1516	1591	1670	1754	1842	1933	2027	2124	2224	2326	2431
	CEA	1107	1182	1261	1347	1438	1535	1639	1750	1869	1995	2130	-	-	-	-	-
Industry (L)	Tr	4,010	4,259	4,523	4,805	5,103	5,255	5,411	5,572	5,736	5,904	6,077	6,253	6,434	6,619	6,809	7,003
	Eco	3946	4216	4494	4780	5073	5374	5683	5998	6320	6648	6982	7321	7667	8018	8374	8735
	HW	3954	4238	4530	4829	5136	5450	5771	6099	6433	6773	7119	7471	7828	8190	8558	8930
	CEA	4030	4303	4594	4905	5237	5591	5969	6373	6804	7264	7755	-	-	-	-	-
PWW	Tr	560	594	630	668	710	735	760	786	813	840	867	895	923	951	980	1,008
	Eco	571	618	668	724	784	851	925	1006	1095	1195	1306	1428	1565	1718	1889	2079
	HW	561	597	631	664	696	728	759	791	822	853	884	915	945	976	1006	1037
	CEA	585	642	703	782	875	980	1097	1233	1393	1580	1795	-	-	-	-	-
Mixed Load	Tr	177	182	188	193	198	204	209	214	220	226	231	236	242	248	253	259
	Eco	206	233	256	277	298	318	338	358	379	401	423	447	471	498	525	552
	HW	206	233	256	277	298	318	338	358	379	401	423	447	471	498	525	552

	CEA	203	209	215	221	227	233	239	245	251	257	263	-	-	-	-	-
Total for Utilities	UR-Tr	22153	23415	24759	26185	27691	29005	30383	31820	33316	34870	36465	38146	39942	41906	44128	46754
			5.7%	5.7%	5.8%	5.8%	4.7%	4.8%	4.7%	4.7%	4.7%	4.6%	4.6%	4.7%	4.9%	5.3%	6.0%
	R-Tr	18897	20154	21499	22933	24436	25772	27180	28659	30208	31831	33508	35284	37184	39273	41649	44386
			6.7%	6.7%	6.7%	6.6%	5.5%	5.5%	5.4%	5.4%	5.4%	5.3%	5.3%	5.4%	5.6%	6.0%	6.6%
	UR-Eco	21982	23625	25313	27056	28857	30673	32531	34428	36362	38329	40304	42307	44325	46351	48376	50463
			7.5%	7.1%	6.9%	6.7%	6.3%	6.1%	5.8%	5.6%	5.4%	5.2%	5.0%	4.8%	4.6%	4.4%	4.3%
	R-Eco	18844	20402	22024	23720	25473	27265	29124	31046	33032	35079	37154	39295	41439	43618	45823	48095
			8.3%	8.0%	7.7%	7.4%	7.0%	6.8%	6.6%	6.4%	6.2%	5.9%	5.8%	5.5%	5.3%	5.1%	5.0%
	HW	19259	20618	22153	23749	25352	26992	28651	30330	32032	33759	35504	37279	39070	40892	42751	44574
			7.1%	7.4%	7.2%	6.7%	6.5%	6.1%	5.9%	5.6%	5.4%	5.2%	5.0%	4.8%	4.7%	4.5%	4.3%
	CEA*	19135	20370	21535	23045	24591	26166	27854	29642	31587	33687	35905	-	-	-	-	-
			6.5%	5.7%	7.0%	6.7%	6.4%	6.5%	6.4%	6.6%	6.6%	6.6%					
																	•

(MUs)	Scenario	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	UR-Tr	3,788	4,046	4,307	4,566	4,819	5,079	5,319	5,531	5,703	5,823	5,935	5,970	5,913	5,751	5,476	5,086
	R-Tr	3,361	3,631	3,908	4,189	4,469	4,761	5,039	5,295	5,517	5,691	5,860	5,954	5,913	5,751	5,476	5,086
	UR-Eco	3900	4192	4494	4807	5131	5461	5803	6157	6524	6903	7297	7705	8128	8568	9024	9507
	R-Eco	3457	3757	4073	4405	4753	5113	5491	5888	6303	6739	7197	7676	8128	8568	9024	9507
	UR-HW	3782	4172	4458	4742	5028	5319	5613	5909	6209	6511	6816	7124	7434	7747	8062	8380
	CEA	3404	3684	3975	4298	4616	4945	5346	5763	6194	6708	7240	-	-	-	-	-
Non- Domestic	UR-Tr	1,411	1,555	1,713	1,887	2,078	2,200	2,327	2,462	2,603	2,752	2,895	3,044	3,198	3,358	3,524	3,694
	R-Tr	1,110	1,239	1,383	1,542	1,719	1,841	1,971	2,110	2,257	2,413	2,568	2,730	2,901	3,079	3,266	3,461
	UR-Eco	1366	1510	1662	1823	1992	2138	2291	2451	2620	2797	2960	3129	3306	3490	3681	3957
	R-Eco	1072	1200	1338	1485	1643	1784	1935	2095	2265	2446	2619	2800	2991	3193	3404	3699
	UR-HW	1326	1393	1471	1550	1630	1710	1790	1870	1951	2032	2113	2194	2275	2356	2438	2519
	CEA	1119	1241	1370	1524	1695	1878	2096	2329	2582	2879	3198	-	-	-	-	-
PSL	Tr	90	98	107	117	127	132	137	141	144	146	146	143	139	132	122	110
	Eco	92	81	90	99	109	119	130	142	155	170	185	202	220	240	263	290
	HW	97	109	121	133	145	156	168	180	191	203	214	226	237	249	261	272
	CEA	71	56	61	67	74	81	89	98	108	119	130	-	-	-	-	-
Agri (M+N+P)	UR-Tr	5,658	6,060	6,488	6,944	7,429	7,888	8,370	8,876	9,407	9,963	10,499	11,059	11,644	12,255	12,890	13,549
	R-Tr	4,116	4,469	4,849	5,260	5,701	6,132	6,591	7,078	7,595	8,144	8,687	9,261	9,868	10,507	11,181	11,888
	UR-Eco	5511	5921	6328	6759	7214	7645	8047	8455	8864	9285	9710	10134	10558	10977	11391	11867
	R-Eco	3994	4350	4713	5101	5517	5922	6314	6719	7132	7564	8007	8459	8918	9382	9850	10380
	UR-HW	5716	6378	6882	7385	7889	8392	8896	9399	9903	10406	10970	11473	11977	12480	12984	13487

9.2.2. AVVNL – Forecast of electricity consumption

											-						
	CEA	5293	5592	5768	5966	6241	6539	6822	7099	7400	7725	8062	-	-	-	-	-
Agri (F)	UR-Tr	1,260	1,107	978	869	776	695	626	565	511	464	422	384	350	320	292	267
	R-Tr	917	816	731	658	595	541	493	450	413	379	349	322	297	274	253	234
	UR-Eco	1333	1032	795	657	622	608	615	539	538	536	535	533	532	531	530	529
	R-Eco	966	758	592	496	476	471	482	428	433	437	441	445	449	454	458	462
	UR-HW	1333	1032	795	657	622	608	615	539	538	536	535	533	532	531	530	529
	CEA	In EPS, A	gri (F) is no	ot given se	parately												
Industry (S + M)	Tr	1,147	1,208	1,272	1,341	1,413	1,480	1,551	1,625	1,702	1,783	1,866	1,953	2,044	2,138	2,237	2,340
	Eco	1162	1229	1297	1367	1438	1510	1584	1659	1736	1815	1895	1976	2059	2144	2230	2318
	HW	1151	1209	1266	1323	1381	1438	1495	1552	1610	1667	1724	1782	1839	1896	1953	2011
	CEA	1159	1233	1313	1397	1486	1582	1683	1791	1906	2028	2158	-	-	-	-	-
Industry (L)	Tr	2,425	2,537	2,653	2,774	2,901	3,039	3,184	3,336	3,495	3,661	3,892	4,137	4,397	4,673	4,964	5,273
	Eco	2665	2832	3039	3229	3413	3596	3780	3968	4161	4359	4602	4817	5043	5280	5532	5799
	HW	2673	2844	3051	3237	3413	3582	3746	3906	4064	4220	4410	4562	4714	4865	5014	5164
	CEA	2508	2713	2934	3173	3432	3712	4015	4342	4696	5079	5494	-	-	-	-	-
PWW	Tr	506	535	565	596	629	648	666	684	702	718	728	736	742	745	747	745
	Eco	532	574	617	662	709	759	812	869	931	998	1070	1149	1234	1328	1431	1544
	HW	521	557	591	625	658	690	722	754	786	817	849	880	911	942	972	1003
	CEA	507	538	574	611	652	694	739	787	839	894	952	-	-	-	-	-
Mixed Load	Tr	113	117	121	126	130	131	131	132	133	134	136	137	139	140	142	143
	Eco	114	126	135	144	153	162	171	180	188	197	206	215	224	232	241	250
	HW	114	126	135	144	153	162	171	180	188	197	206	215	224	232	241	250
	CEA	116	121	127	133	140	147	154	162	170	179	188	-	-	-	-	-

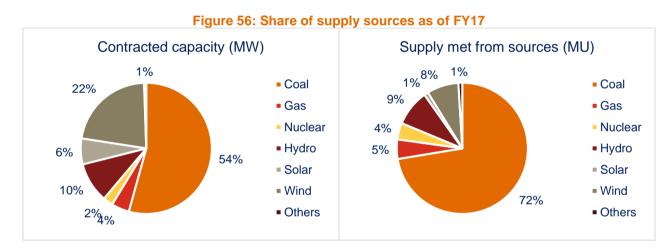
Total for Utilities	UR-Tr	16398	17263	18205	19220	20301	21291	22311	23352	24400	25444	26519	27564	28566	29512	30394	31208
			5.3%	5.5%	5.6%	5.6%	4.9%	4.8%	4.7%	4.5%	4.3%	4.2%	3.9%	3.6%	3.3%	3.0%	2.7%
	R-Tr	13785	14650	15590	16602	17683	18704	19763	20851	21957	23070	24231	25374	26438	27440	28388	29281
			6.3%	6.4%	6.5%	6.5%	5.8%	5.7%	5.5%	5.3%	5.1%	5.0%	4.7%	4.2%	3.8%	3.5%	3.1%
	UR-Eco	16676	17498	18458	19546	20781	21998	23232	24421	25716	27060	28458	29860	31304	32791	34322	36060
			4.9%	5.5%	5.9%	6.3%	5.9%	5.6%	5.1%	5.3%	5.2%	5.2%	4.9%	4.8%	4.8%	4.7%	5.1%
	R-Eco	14054	14908	15893	16986	18210	19437	20700	21949	23305	24725	26221	27738	29267	30821	32432	34249
			6.1%	6.6%	6.9%	7.2%	6.7%	6.5%	6.0%	6.2%	6.1%	6.1%	5.8%	5.5%	5.3%	5.2%	5.6%
	HW	14100	15208	16156	17179	18300	19470	20666	21789	22997	24215	25549	26799	28015	29226	30450	31688
			7.9%	6.2%	6.3%	6.5%	6.4%	6.1%	5.4%	5.5%	5.3%	5.5%	4.9%	4.5%	4.3%	4.2%	4.1%
	CEA	14177	15178	16122	17170	18335	19578	20944	22372	23895	25610	27423	-	-	-	-	-
			7.1%	6.2%	6.5%	6.8%	6.8%	7.0%	6.8%	6.8%	7.2%	7.1%					

(MUs)	Scenario	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	UR-Tr	3,561	3,820	4,085	4,352	4,616	4,834	5,032	5,199	5,327	5,406	5,485	5,492	5,415	5,243	4,971	4,621
	R-Tr	3,156	3,424	3,702	3,987	4,275	4,526	4,761	4,972	5,148	5,277	5,410	5,472	5,415	5,243	4,971	4,621
	UR-Eco	3556	3834	4124	4428	4746	5079	5429	5796	6182	6590	7019	7473	7954	8463	9004	9579
	R-Eco	3151	3436	3738	4057	4396	4755	5137	5542	5974	6433	6923	7445	7954	8463	9004	9579
	UR-HW	3638	3923	4201	4475	4748	5020	5291	5561	5831	6101	6371	6641	6911	7181	7451	7721
	CEA	3293	3593	3834	4117	4384	4659	4962	5273	5593	5944	6306	-	-	-	-	-
Non- Domestic	UR-Tr	1,361	1,473	1,594	1,725	1,865	2,013	2,172	2,342	2,523	2,717	2,968	3,240	3,534	3,851	4,194	4,570
	R-Tr	1,068	1,171	1,283	1,405	1,538	1,681	1,835	2,002	2,182	2,376	2,626	2,899	3,197	3,523	3,878	4,272
	UR-Eco	1346	1487	1635	1792	1957	2112	2274	2444	2622	2809	2988	3176	3372	3578	3793	4065
	R-Eco	1056	1182	1316	1460	1614	1763	1921	2089	2267	2457	2644	2842	3051	3273	3507	3800
	UR-HW	1304	1416	1529	1641	1753	1866	1978	2090	2203	2315	2428	2540	2652	2765	2877	2989
	CEA	1161	1366	1609	1908	2258	2665	3147	3719	4397	5196	6135	-	-	-	-	-
PSL	Tr	147	149	152	154	155	169	184	201	219	238	251	262	271	274	272	264
	Eco	153	158	170	181	193	204	216	227	239	251	262	274	286	297	309	321
	HW	153	166	178	190	202	214	226	238	250	263	275	287	299	311	323	335
	CEA	118	87	98	110	124	139	156	175	197	221	249	-	-	-	-	-
Agri (M+N+P)	UR-Tr	12,138	13,404	14,797	16,330	18,016	18,913	19,846	20,816	21,822	22,865	23,814	24,787	25,785	26,804	27,844	29,592
	R-Tr	8,796	9,847	11,019	12,324	13,776	14,652	15,573	16,542	17,560	18,628	19,639	20690	21,780	22,909	24,076	25,884
	UR-Eco	12020	13177	14385	15644	16960	18318	19737	21219	22769	24388	26083	27856	29712	31657	33694	35854
	R-Eco	8716	9681	10712	11807	12969	14191	15487	16863	18322	19869	21510	23251	25098	27057	29135	31361
	UR-HW	11893	12873	13853	14832	15812	16792	17771	18751	19731	20711	21690	22670	23650	24629	25609	26589

9.2.3. JdVVNL – Forecast of electricity consumption

											_						
	CEA	10324	11350	12273	13327	14478	15827	17239	18742	20398	22211	24196	-	-	-	-	-
Agri (F)	UR-Tr	1 <u>,6</u> 16	1,446	1,295	1,163	1,045	961	887	822	763	710	663	619	579	543	509	372
	R-Tr	1,171	1,062	965	877	799	745	696	653	614	579	546	517	489	464	440	325
	UR-Eco	1255	1134	1064	1020	991	973	964	965	975	990	1008	1031	1056	1084	1115	1148
	R-Eco	910	833	793	770	758	754	757	767	784	806	832	860	892	927	964	1004
	UR-HW	1255	1134	1064	1020	991	973	964	965	975	989	1008	1031	1056	1084	1115	1148
	CEA In EPS, Agri (F) is not given separately																
Industry (S + M)	Tr	883	922	963	1,007	1,053	1,090	1,128	1,168	1,209	1,253	1,294	1,336	1,380	1,426	1,474	1,546
	Eco	897	942	988	1036	1086	1138	1193	1250	1310	1373	1439	1508	1580	1656	1735	1819
	HW	922	963	1005	1049	1094	1140	1187	1234	1282	1330	1380	1429	1479	1530	1581	1632
	CEA	895	947	1001	1059	1121	1186	1255	1327	1404	1486	1572	-	-	-	-	-
Industry (L)	Tr	1,286	1,401	1,531	1,678	1,843	1,919	1,999	2,081	2,167	2,257	2,348	2,442	2,540	2,643	2,749	2,879
	Eco	1459	1579	1685	1788	1895	2008	2131	2266	2415	2581	2549	2750	2977	3233	3522	3848
	HW	1348	1417	1463	1498	1525	1547	1565	1580	1592	1602	1393	1394	1393	1391	1388	1384
	CEA	1233	1285	1339	1396	1455	1516	1580	1647	1716	1789	1865	-	-	-	-	-
PWW	Tr	835	875	917	959	1,002	1,018	1,032	1,045	1,056	1,066	1,073	1,078	1,081	1,082	1,080	1,057
	Eco	858	906	953	999	1044	1089	1132	1175	1217	1258	1297	1336	1373	1409	1444	1476
	HW	861	903	947	993	1039	1085	1132	1179	1226	1273	1321	1368	1416	1463	1511	1559
	CEA	824	857	896	936	979	1021	1066	1114	1164	1216	1271	-	-	-	-	-
Mixed Load	Tr	358	366	373	380	387	392	397	401	406	410	414	418	422	425	429	432
	Eco	370	396	414	439	461	479	487	505	525	544	565	591	609	634	656	675
	HW	370	396	414	439	461	479	487	505	525	544	565	591	609	634	656	675
C Mixed Load E H	CEA	357	368	375	383	392	400	409	418	427	436	446	-	-	-	-	-

Total for Utilities	UR-Tr	22,185	23,856	25,707	27,746	29,983	31,309	32,677	34,075	35,494	36,922	38,309	39,675	41,007	42,292	43,521	45,332
			7.5%	7.8%	7.9%	8.1%	4.4%	4.4%	4.3%	4.2%	4.0%	3.8%	3.6%	3.4%	3.1%	2.9%	4.2%
	R-Tr	17,700	19,217	20904	22,771	24,831	26,191	27,605	29,065	30,562	32,084	33,600	35,114	36,576	37,990	39,369	41,279
			8.6%	8.8%	8.9%	9.0%	5.5%	5.4%	5.3%	5.2%	5.0%	4.7%	4.5%	4.2%	3.9%	3.6%	4.9%
	UR-Eco	21918	23613	25418	27327	29332	31401	33563	35848	38253	40783	43212	45995	48920	52011	55271	58784
			7.7%	7.6%	7.5%	7.3%	7.1%	6.9%	6.8%	6.7%	6.6%	6.0%	6.4%	6.4%	6.3%	6.3%	6.4%
	R-Eco	17570	19113	20768	22537	24415	26382	28461	30685	33053	35572	38022	40857	43820	46949	50276	53882
			8.8%	8.7%	8.5%	8.3%	8.1%	7.9%	7.8%	7.7%	7.6%	6.9%	7.5%	7.3%	7.1%	7.1%	7.2%
	HW	17260	18552	19851	21161	22472	23997	25529	27094	28683	30292	31723	33389	35034	36686	38359	39979
			7.5%	7.0%	6.6%	6.2%	6.8%	6.4%	6.1%	5.9%	5.6%	4.7%	5.3%	4.9%	4.7%	4.6%	4.2%
	CEA	18204	19853	21425	23236	25190	27413	29813	32415	35296	38499	42038	-	-	-	-	-
			9.1%	7.9%	8.5%	8.4%	8.8%	8.8%	8.7%	8.9%	9.1%	9.2%					


10. Functional strategies for supply side to meet the projected demand

The demand forecasted using alternate approach in the previous section have to be met by ramp up of supply sources or by planned procurement plans. While the Utilities currently have tied up capacities to meet the electricity and peak demand requirement, the same may not be sufficient to meet the future demand.

10.1. Existing supply position in Rajasthan

Power sector in Rajasthan has witnessed substantial growth over the past decade due to increase in generation capacity and strengthening of network infrastructure. These initiative have led to an improvement in the overall power supply position of the state. Currently, most connected consumers in the state are being provided with at least 21-22 hours of power supply²⁴.

In terms of generation capacity, the total power generation installed capacity has grown from 10,160 MW to 18,826 MW during April 2012 to February 2017. The share of the generation in terms of MW and MUs is given in the following:

The table below provides the breakup of the sources²⁵ as of February 2017:

	Figure 57	: Contracted capacity	of Rajasthan as of	February FY17 (M	N)
SI. No.	Source	Central sector	State sector	Private	Total
1.	Coal	1015	5190	3196	9401
2.	Hydro	742	1088	-	1829
3.	Gas	221	604	-	825
4.	Nuclear	573	-	-	573
5.	Renewable	775	165	5258	6198
	Total	3326	7047	8454	18826

It can be observed (Figure 1) that nearly 72% of the state demand (in MUs) is met through supply from coal based sources. Even though the state has a high potential for renewables and current installed capacity (FY17)

²⁴ Rajasthan Power for All document

²⁵ State Renewable Energy Action Plan

Alternate methodology for Electricity demand assessment and forecasting

for renewables is about 29% (in MWs), contribution of renewable energy towards meeting electricity requirement of the state is a meagre 9%.

In terms of renewable energy (RE) potential, Rajasthan has solar potential of 142 GW²⁶ and wind potential of 18.7 GW²⁷. The state receives maximum solar radiation intensity in India with very low average rainfall. It also has uncultivated land in abundance and favorable climate, which has led to the state emerging as the leading hub for renewable energy. RE capacity addition in state has grown at yearly rate of 22 %, which is more than national average of 14%²⁸. At present, installed RE capacity in the state is around 6.2 GW, of which wind energy capacity is ~70%. However, solar is expected to overtake and lead the renewable energy generation in the state in future.

10.2. Options for Supply side evaluation

The following two options of demand side results have been considered for evaluating the supply side option.

Scenario 1: Demand derived from restricted condition – result using trend method

Scenario 2: Demand derived from unrestricted condition - result using econometric method

The following table summarizes the two scenarios which have been considered.

	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24
	FT I/	FIIO	FT 19	FT 20	FI ZI	F1 22	FT 23	FT 24
Scenario 1 – Restricted (R)	55383	57634	61931	66609	71720	75845	80265	84891
Scenario 2 – Unrestricted (UR)	65015	67673	72353	77301	82636	87935	93513	99186
	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Scenario 1 – Restricted (R)	89706	96011	101052	106476	111024	116655	122604	129568
Scenario 2 – Unrestricted (UR)	105129	112577	118613	125202	131020	137930	144980	152578

10.3. Assessment of supply capacity required to meet projected demand for the state

Supply side planning is a critical task which leads to meeting of the ever increasing demand of power in any region or state. The planning of capacity to be required in future is crucial as it involves capital investment and also substantial period of time before it can be used for generation. Historically, the capacity has been dependent on coal, but moving ahead, the same may not be the case. Since resources are limited, it is essential that planning is optimized.

Broad assumptions considered for the current evaluation are:

• Assessment of supply side is for the consumer demand at state level to be met by the Distribution utilities.

²⁶ NISE Estimate

²⁷ NIWE estimate

²⁸ State Renewable energy action plan

- All other additional demand from e.g. electric vehicles, latent demand, demand from new housing and infrastructure, metro, industrial corridor etc. has been assumed to be met by state distribution utilities
- Evaluation is based on the assumption that electricity from coal based stations will be least priority i.e. available capacities from other sources will be considered first to meet the demand. The same is in line with the goal of reducing emissions and reducing dependence on coal based sources
- The planning is as per the current policy decision wherein renewable capacity addition has been given impetus by the Government
- Renewable sources Solar, Wind, Biomass etc. have been considered as must run
- Electricity scheduled from available/ new hydro and gas based stations will be considered before coal based sources
- Generation from rooftop solar plants has been considered and has been given preference in consumption by consumers to meet their own demand first.
- For meeting peak demand, availability from various generation sources have been considered. The peaking availability has been considered as per data given in the final NEP'2018.
- Impact of pricing of power supply has not been considered

10.3.1. Electricity requirement of state consumers to be met by sources other than Distribution utilities

10.3.1.1. Demand from Open Access, Captive and Railways

Electricity requirement for open access consumers as well as for captive and railways are not met by the distribution utilities. Hence, the projected demand for the three heads have been deducted from the overall state demand. The following table provides the quantum of projected demand to be subtracted from the overall state demand.

	Table 67: Elect	Table 67: Electricity demand from Open Access, Captive and Railways												
MUs	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24						
OA & captive	4568	2845	2987	3136	3293	3458	3630	3812						
Railways	433	451	470	488	507	526	544	563						
MUs	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32						
OA & captive	4003	4203	4413	4633	4865	5108	5364	5632						
Railways	581	600	618	637	656	674	693	711						

10.3.1.2. Demand to be met from rooftop solar plants

India has set a path to achieve 100 GW installed capacity through grid-connected solar energy, out of which 40 GW is targeted to come through rooftop solar installations by 2022. Till date, efforts have been put in place to develop the rooftop solar photovoltaic sector in India by the government, regulatory commissions and concerned agencies. Basic framework exists in the country and implementation of rooftop solar photovoltaic plants has been ongoing. However, considering the targets committed with respect to rooftop solar photovoltaic plants, there is still a high gap to be met in terms of installed capacity.

In February 2015, the regulations for net metering for rooftop solar system was issued by the Rajasthan Electricity Regulatory Commission, under which, an individual could use the power generated and the surplus could be fed into the DISCOM's grid. In October'17, Rajasthan Renewable Energy Corporation Ltd (RRECL) came out with tender for 18 MW of grid-connected rooftop solar projects under the RREC's rooftop power generation program for 2017-18. As per India Solar Rooftop map²⁹, 2017, the total installed rooftop capacity in Rajasthan has been reported at 129 MW. The capacity includes that of industrial, commercial, residential and public sector installations in the state.

The report also highlights that between FY13 to FY17, the all India market for rooftop solar has grown at a CAGR of 66% mainly due to sudden surge in installations and low installed base capacity till FY13-14. However, in terms of installed capacity, ~ 10.8GW is expected at an all India basis by FY21. Target for FY22 for rooftop solar is 40 GW. For Rajasthan, MNRE has given a target of 2300 MW upto FY22.

To project the solar rooftop capacity in the state, the following data/ assumptions have been considered:

- Estimated installed capacity from FY19 to FY22 has been assumed to grow at 66% in line with that of the country. The assumption is also based on the fact that Rajasthan is one of the leading states in solar installation and since the state has been given a target of 2300MW, the period upto FY22 will involve major installations.
- Post FY22, a nominal growth rate of 15% upto FY32 has been considered

.

• Capacity Utilization Factor of 19% and auxiliary consumption of 0.25%, as per CERC RE Regulations, 2017 and 300 days of solar availability has been considered

. . .

. .

The following tables provides the projected installed capacity and electricity to be generated in MUs.

	Table 68: Ex	cpected co	nsumer de	emand to b	<u>e met by ro</u>	ooftop sola	ir 👘	
	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24
MW	52	129	214	355	590	980	1126	1295
MUs	71	176	292	485	805	1337	1537	1768
	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
MW	1490	1713	1970	2266	2606	2996	3446	3963
MUs	2033	2338	2689	3092	3556	4089	4702	5408
	·····							

The energy projections (in MU) have been assumed to be used by respective prosumers to meet the self-demand. Hence the same will not be met by Distribution utilities and will be subtracted from the total state demand projections along with Open Access, Captive, and Railways etc. The balance available demand under both the scenarios is the net electricity requirement which will have to be served by the distribution utilities in the state.

10.3.2. Electricity requirement to be met by Distribution utilities in the state

The net addressable electricity demand has been arrived as per the following formula:

- Net addressable electricity demand at consumer end to be met by distribution utilities
- = Total projected electricity demand (electricity demand met by OA, Captive, Railways, rooftop solar)

²⁹ India Solar Rooptop map, Bridge to India, September 2017

MUs	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24
Scenario 1-R	50311	54162	58182	62499	67115	70525	74553	78749
Scenario 2-UR	59943	64201	68604	73191	78031	82615	87801	93044
MUs	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Scenario 1-R	83089	88871	93332	98114	101948	106784	111845	117817
Scenario 2-UR	98512	105437	110893	116840	121944	128059	134221	140827

To meet the net addressable demand at the consumer end, the distribution utilities will have to enter into agreements with the available generation sources. The addressable demand required at the state boundary is arrived by grossing up the demand at the consumer end with the overall T&D losses

Table 70: Net addressable electricity demand at state boundary to be procured by Distribution utilities												
FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24					
68286	70836	76547	80950	85606	88618	92314	97305					
81359	83965	90259	94798	99530	103810	108719	114968					
FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32					
102462	109381	114660	120322	124812	130520	136494	143680					
121481	129770	136234	143286	149292	156524	163802	171741					
	FY 17 68286 81359 FY 25 102462	FY 17 FY 18 68286 70836 81359 83965 FY 25 FY 26 102462 109381	FY 17 FY 18 FY 19 68286 70836 76547 81359 83965 90259 FY 25 FY 26 FY 27 102462 109381 114660	FY 17 FY 18 FY 19 FY 20 68286 70836 76547 80950 81359 83965 90259 94798 FY 25 FY 26 FY 27 FY 28 102462 109381 114660 120322	FY 17 FY 18 FY 19 FY 20 FY 21 68286 70836 76547 80950 85606 81359 83965 90259 94798 99530 FY 25 FY 26 FY 27 FY 28 FY 29 102462 109381 114660 120322 124812	FY 17 FY 18 FY 19 FY 20 FY 21 FY 22 68286 70836 76547 80950 85606 88618 81359 83965 90259 94798 99530 103810 FY 25 FY 26 FY 27 FY 28 FY 29 FY 30 102462 109381 114660 120322 124812 130520	FY 17 FY 18 FY 19 FY 20 FY 21 FY 22 FY 23 68286 70836 76547 80950 85606 88618 92314 81359 83965 90259 94798 99530 103810 108719 FY 25 FY 26 FY 27 FY 28 FY 29 FY 30 FY 31 102462 109381 114660 120322 124812 130520 136494					

The projection of the balance generation sources is given in the following section.

10.3.3. Projection of generation sources to meet projected electricity demand

10.3.3.1. Wind power

The installed wind power capacity has grown at a CAGR of 8% during the period FY13 to FY18 as per actual data. As of FY18, the reported wind power installed capacity is 4295 MW. CAGR rate of 8% has been used to project the installed capacity for forecast period.

To arrive at the energy in MUs to be generated, an average CUF of 22% has been considered as per CERC RE Regulations 2017.

10.3.3.2. Solar

Installation of solar capacity has witnessed a 5 year CAGR rate of 32% for the period from FY13 to FY18. While the higher rate is because of low base in FY13 and a high growth achieved in the period of FY16-18. The momentum is expected to continue upto FY 22 and hence the same CAGR rate has been considered for projections upto FY22. As per planning estimates³⁰, the installed capacity is expected to reach 4049 MW by FY22 against a target of 5762 MW.

³⁰ RRVPNL data accessed

Alternate methodology for Electricity demand assessment and forecasting

Projected energy which can be met from solar sources has been arrived at by considered a CUF of 19% CERC RE Regulations 2017, 300 days of solar availability and a deration of 0.5%.

10.3.3.3. Biomass

Biomass capacity in FY15 in Rajasthan has been reported at 75 MW and as of FY18, the installed capacity is 120MW. In terms of actual electricity procured by the utilities, 279 MU were procured in FY15 and it increased to 293 MU in FY18. Even though there has been an increase in capacity (in MW), the energy procured (in MU) has not increased at the same pace indicating a decrease in net PLF to 32% in FY 18. As per the State Renewable Energy plan, projects of 18.8MW are in pipeline. YoY capacity addition of 20MW has been considered upto FY 22. For period post FY22, a CAGR of 15% (which is the CAGR for period FY15 to FY22) has been assumed to continue for the remaining years. To project the electricity generated, a YoY improvement in PLF of 1% has been taken with assumption that there will be better fuel availability and intake by utilities.

10.3.3.4. Hydro

Growth in installed capacity for hydro power stations tied up to Rajasthan has grown at a CAGR of 6% in the period from FY13 to FY17. It has been assumed that the same growth will continue. In addition expected capacity of 230 MW (share of Rajasthan) from Parbati II, Tehri Stage II and Teesta VI hydro power plants have also been added in year FY22³¹.

Even though country has hydro power potential, the growth in installed capacity has lagged in comparison to other generation sources. The electricity procured from hydro power stations in the previous five years indicates a net PLF in range of 30-35% and the electricity consumption has increased at a rate of 6.2% upto FY17. For the future projections, the present condition has been extrapolated assuming the same growth rate of 6.2%.

10.3.3.5. Nuclear

The capacity linked to Rajasthan as of FY18 is 557 MW and actual electricity procured is 2971 MU. Two new installations (Unit VII and Unit VIII) as part of expansion of existing Rajasthan Atomic Power Project are expected to be commissioned in year FY19 and FY20. The expected electricity to be generated has been derived using the actual average PLF observed for the previous years.

10.3.3.6. Gas and Coal

For gas and coal, two scenarios have been considered

Planning scenario – Gas based stations has been accorded a higher priority than coal based stations to derive the additional coal capacities which will be required. For gas, the committed capacity additions upto FY22 as per final NEP'18 has been considered. Also, as per the results of the final NEP'18, there would be no capacity additions from FY22 onwards. Starting from FY17, a PLF of 21% has been considered which is expected to remain constant till FY32. In case availability of gas improves, the PLF is expected to go up.

Merit order scenario – In case merit order is considered, gas will be accorded the least priority. Since availability of gas is a concern, the unfilled load due to low PLF of gas based stations may have to met from additional coal based capacities in future.

Thermal capacity using coal for Rajasthan was 10226 MW as of FY 17 including share from central stations and for plants managed by Rajasthan Vidyut Utpadan Nigam (RVUN). For the period of FY 13 to FY 17, the CAGR growth in capacity is 14%. For the period from FY19 to FY as per CEA³² data, the capacity addition for Rajasthan is expected to be 1386 MW in FY19, 66 MW in FY20 and 500MW in FY21. Post the capacity additions, no increase in capacity has been estimated for the period from FY22 to FY27 for the state.

³¹ 91st CEA quarterly review, Jan'18

³² Broad status of thermal power projects in the country, CEA, Dec'17

Alternate methodology for Electricity demand assessment and forecasting

For the period from FY14 to FY17, based on the actual MW capacity and electricity procured from thermal power stations, a decreasing trend of average PLF has been observed (auxiliary consumption considered as 6.5% as per final NEP'18³³).

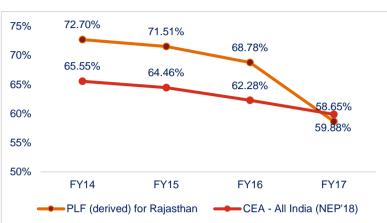


Figure 58: Trend of PLF for coal based thermal power stations

The decrease in trend for coal based be attributed to excess stations may capacity and due to subdued demand with higher coupled penetration of renewable energy. As per the final NEP'18, 112% achievement has been achieved against the target set for the period FY 2012-17. Specifically for Rajasthan, where nearly 29% of capacity (in terms of MW) is renewable based, the decrease in PLF in the year from FY16 to FY17 is higher.

For a renewable rich state like Rajasthan, the trend is expected to further decrease in case the momentum of RE addition

continues and if the system is able to accommodate the increasing energy generated from RE sources in the state.

Since coal has been given the least priority in planning, the distribution utility in the state has to meet the balance electricity demand of consumer by sourcing electricity generated from the installed coal based capacities. Since the PLF of coal based power plants is already decreasing, the focus in planning will be to utilize the already installed capacity to meet the increasing demand.

Depending on the results of the scenarios used, the requirement of coal based capacity to meet the electricity demand will be different.

10.3.3.7. Retirement of old units

The retirement of old units has been considered as per the data provided in the final NEP'2018. At an all India level, it is estimated that by the year 2022, coal capacities of 22,716MW will be retired, 5927 MW of old units and 16789 MW will complete 25 years by 2022 and won't meet the new environmental norms. It has also been estimated that 25,572MW of coal capacities will be retired by the year 2027.

The capacities linked with Rajasthan which will retire by the year 2022 and 2027 were worked out from the data given. The following capacities are expected to be retired for the state of Rajasthan

Table 71: Exp	Table 71: Expected capacities to be retired by 2022 and 2027										
Retiring capacities	Upto	o 2022	Upto	o 2027							
	CEA	Rajasthan	CEA	Rajasthan							
Retirement due to age	5927	0	0	0							
Due to environmental norms - Coal	16789	850	25572	1378							

The expected capacities to be retired by the year 2032 has been projected using the data available for 2022 and 2027 and it is expected that approximately 2234 MW of capacities will be retired for Rajasthan. The projection is based on the assumption that there will not any change in the current norms. The following section provides an estimate of the coal based capacities to be required in order to meet the electricity requirement.

³³ CEA Final NEP'18, Page 142

Alternate methodology for Electricity demand assessment and forecasting

Coal capacities required to meet electricity consumption demand

The summary of generation_capacities and the electricity to be generated from all the sources is given in the table below:

	Table 72: Summary of projections - generation sources EV 17 EV 18 EV 20 EV 21 EV 22 EV 23 EV 25 EV 26 EV 27 EV 28 EV 30 EV 31 EV 33															
	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Wind																
MW	4124	4295	4650	5035	5452	5592	6055	6557	7100	7687	8324	9013	9759	10567	11442	12389
MUs	7948	8360	9142	9997	10934	11327	12387	13548	14817	16202	17720	19379	21193	23177	25347	27719
Solar																
MW	1194	1784	2358	3116	3519	4049	4657	5355	6159	7083	8145	9367	10772	12387	14246	16382
MUs	1987	2999	4004	5343	6095	7083	8228	9556	11100	12893	14975	17394	20203	23464	27255	31655
Biomass																
MW	102	120	138	158	178	198	227	261	300	345	396	455	523	600	690	792
MUs	250	300	352	411	473	536	627	735	862	1011	1184	1388	1627	1904	2233	2615
Hydro																
MW	1931	2047	2171	2302	2441	2818	2988	3168	3359	3561	3776	4004	4245	4501	4772	5060
MUs	5582	5917	6276	6655	7056	8146	8638	9158	9710	10294	10916	11575	12271	13011	13795	14627
Nuclear																
MW	557	557	1257	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957	1957
MUs	3123	3123	7047	10972	10972	10972	10972	10972	10972	10972	10972	10972	10972	10972	10972	10972
Gas																
MW	825	825	825	825	825	838	838	838	838	838	838	838	838	838	838	838
MUs	1517	1517	1517	1517	1517	1541	1541	1541	1541	1541	1541	1541	1541	1541	1541	1541
Total																
MW	8733	9628	11399	13393	14372	15452	16722	18136	19713	21471	23436	25634	28094	30850	33945	37418
MUs	20407	22216	28338	34895	37047	39605	42393	45510	49002	52913	57308	62249	67807	74069	81143	89129

Of the net addressable electricity requirement at state boundary, the MUs to be met by all the generation sources (other than coal) is given as above. The balance electricity requirement is to be met from based thermal power stations.

Tab	le 73: Balance e	electricity	demand to	o be met k	by coal ba	sed sourc	es	
MUs	FY 17	FY18	FY19	FY20	FY21	FY22	FY23	FY24
Scenario 1-R	47879	48620	48209	46055	48559	49013	49921	51795
Scenario 2-UR	60952	61749	61921	59903	62483	64205	66326	69458
	FY 25	FY26	FY27	FY28	FY29	FY30	FY31	FY32
Scenario 1-R	53460	56468	57352	58073	57005	56451	55351	54551
Scenario 2-UR	72479	76857	78926	81037	81485	82455	82659	82612

Table 73: Balance electricity demand to be met by coal based sources

To derive the coal capacities, a PLF of 70% has been considered for the year FY17 and a YoY progressive increase of 0.75% has been assumed.

Table 74: Coal capacities required to meet net addressable electricity demand											
MW	FY 17	FY18	FY19	FY20	FY21	FY22	FY23	FY24			
Scenario 1-R	7808	7870	7745	7344	7686	7700	7784	8016			
Scenario 2-UR	9940	9995	9948	9552	9890	10086	10342	10750			
	FY 25	FY26	FY27	FY28	FY29	FY30	FY31	FY32			
Scenario 1-R	8212	8610	8680	8723	8499	8354	8130	7953			
Scenario 2-UR	11134	11719	11945	12173	12149	12202	12141	12044			

In the results arrived at for both the scenarios, the requirement for meeting peak demand has not been included. The following section looks into the capacity required to meet the peak demand in the state.

10.3.4. Projection of generation source to meet projected peak demand

Distribution utilities have to plan for meeting the peak demand which may be incident on the system. The planning for peak demand is critical as otherwise there will be load curtailments or blackouts or the grid system may also fail in extreme circumstances. Hence, the system has to be designed keeping in view the future network requirements and the utilities should plan the generation sources so that peak demand can be met, other than meeting the electricity demand. To arrive at the additional capacity required to meet the peak demand, capacity of only conventional sources have been considered.

Peaking availability

To arrive at the conventional capacity required, the peaking availabilities of the generating units have been considered as per the data provided in the final NEP'18.

Table 75: Peaking availability of the generating units SI. No. Generation source Peaking availability										
Generation source	Peaking availability									
Thermal	85%									
Gas	88%									
Hydro	68%									
Nuclear	87.5%									
	Generation source Thermal Gas Hydro									

Spinning reserve

In addition, to peaking availability of the generating units, spinning reserve is also considered. As per the final NEP'18, the electricity policy stipulates that in addition to enhancing the overall availability of installed capacity to 85%, a spinning reserve of at least 5% at national level is required to be created to ensure grid security, quality and reliability of power supply. However, in the present scenario, since the planning is being undertaken at the state level, additional 5% for spinning reserve has not been considered.

PLFs of generation sources considered to meet peak

In order to meet the peak demand, the PLFs for various generation sources have been considered. The PLFs have been considered based on the quantum of peak demand that may be met by the sources. The details of PLF for various generation sources and the quantum of peak demand met by the sources are given in the following table:

MW	FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32
Wind	11%	11%	11%	11%	11%	12%	12%	12%	12%	12%	12%	12%	12%	13%	13%	13%
Solar	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Biomass	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%
Hydro	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%
Gas	21%	21%	21%	21%	21%	21%	21%	21%	21%	21%	21%	21%	21%	21%	21%	21%
Nuclear	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%

Table 76: PLFs of generation sources considered to meet peak demand

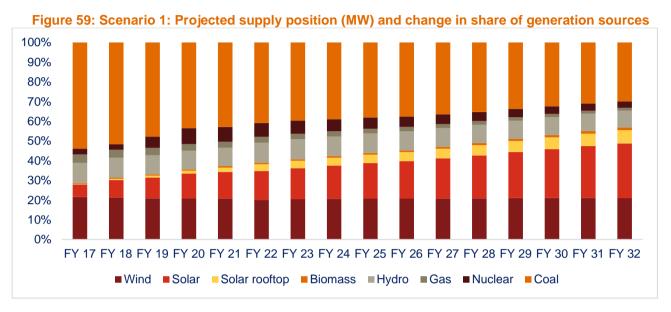
Table 77: Quantum of peak demand met by various generation sources other than coal

MW	FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32
Wind	454	477	522	571	624	646	707	773	846	925	1011	1106	1210	1323	1447	1582
Solar	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Biomass	51	60	69	79	89	99	114	131	150	173	198	228	262	300	345	396
Hydro	1545	1638	1737	1842	1953	2254	2390	2534	2687	2849	3021	3203	3396	3601	3818	4048
Gas	173	173	173	173	173	176	176	176	176	176	176	176	176	176	176	176
Nuclear	446	446	1006	1566	1566	1566	1566	1566	1566	1566	1566	1566	1566	1566	1566	1566
Total	2669	2794	3507	4231	4405	4741	4953	5180	5425	5689	5972	6279	6610	6966	7352	7768

The balance of the net addressable peak demand has to be met by the coal based generation sources.

MW	FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32
Total peak demand for th	he state															
Scenario 1-R	12224	12222	13175	13910	14688	15258	15868	16701	17563	18710	19601	20532	21314	22297	23334	24574
Scenario 2-UR	14349	14352	15392	16143	16923	17691	18487	19513	20583	21938	23008	24143	25152	26364	27592	28939
Peak demand for Railwa	ys, OA, R	ooftop etc	•													
	825	563	606	663	739	852	912	978	1051	1131	1219	1315	1423	1544	1678	1828
Balance net addressable	e peak der	nand to be	e met by t	he state D	ISCOMs											
Scenario 1-R	11399	11659	12569	13247	13949	14406	14956	15723	16512	17579	18382	19217	19891	20753	21656	22746
Scenario 2-UR	13524	13789	14786	15480	16184	16839	17575	18535	19532	20807	21789	22828	23729	24820	25914	27111
Scenario 2-OK	10024	10100														
Balance peak demand to shall also be used to me	be met b	y coal bas	sed source	es (after c				-	-	ation sou	rces). The	e coal cap	acity deriv	ved to me	et peak de	mand
Balance peak demand to	be met b	y coal bas	sed source	es (after c				-	-	ation sou 11890	rces). The 12410	e coal cap 12938	acity deriv 13281	ved to me 13787	et peak de 14304	mand 14978
Balance peak demand to shall also be used to me	be met b eet the ele	y coal bas ctricity de	sed source mand for	es (after c coal. The	derived P	LF also g	iven in the	following	g			-			-	
Balance peak demand to shall also be used to me Scenario 1-R	be met b bet the ele 8730	y coal bas ctricity de 8865	sed source mand for 9062	es (after c coal. The 9016	derived P 9544	LF also g 9665	iven in the 10003	following 10543	g 11087	11890	12410	12938	13281	13787	14304	14978 42%
Balance peak demand to shall also be used to me Scenario 1-R Derived PLF	be met be beet the ele 8730 63%	y coal bas ctricity de 8865 63%	end source mand for 9062 61%	es (after c coal. The 9016 58%	derived P 9544 58%	LF also g 9665 58%	iven in the 10003 57%	following 10543 56%	g 11087 55%	11890 54%	12410 53%	12938 51%	13281 49%	13787 47%	- 14304 44%	14978
Balance peak demand to shall also be used to me Scenario 1-R Derived PLF Scenario 2-UR	be met b eet the ele 8730 63% 10855 64%	y coal bas ctricity de 8865 63% 10995 64%	eed source mand for 9062 61% 11279 63%	es (after c coal. The 9016 58% 11249 61%	derived P 9544 58% 11779 61%	LF also g 9665 58% 12098 61%	iven in the 10003 57% 12622 60%	e following 10543 56% 13355 59%	g 11087 55% 14107 59%	11890 54% 15118 58%	12410 53% 15817 57%	12938 51% 16549	13281 49% 17119	13787 47% 17854	14304 44% 18562	14978 42% 19343
Balance peak demand to shall also be used to me Scenario 1-R Derived PLF Scenario 2-UR Derived PLF	be met b eet the ele 8730 63% 10855 64%	y coal bas ctricity de 8865 63% 10995 64%	eed source mand for 9062 61% 11279 63%	es (after c coal. The 9016 58% 11249 61%	derived P 9544 58% 11779 61%	LF also g 9665 58% 12098 61%	iven in the 10003 57% 12622 60%	e following 10543 56% 13355 59%	g 11087 55% 14107 59%	11890 54% 15118 58%	12410 53% 15817 57%	12938 51% 16549	13281 49% 17119	13787 47% 17854	14304 44% 18562	14978 42% 19343 49%
Balance peak demand to shall also be used to me Scenario 1-R Derived PLF Scenario 2-UR Derived PLF In case 85% peaking ava	be met b set the ele 8730 63% 10855 64% ailability (y coal bas ctricity de 8865 63% 10995 64% as per Fina	sed source mand for 9062 61% 11279 63% al NEP'18	es (after c coal. The 9016 58% 11249 61%) is also c	derived P 9544 58% 11779 61% onsidered	LF also g 9665 58% 12098 61% in the ab	iven in the 10003 57% 12622 60% ove, the d	e following 10543 56% 13355 59% erived co	g 11087 55% 14107 59% al capacit	11890 54% 15118 58% y is given	12410 53% 15817 57% below:	12938 51% 16549 56%	13281 49% 17119 54%	13787 47% 17854 53%	14304 44% 18562 51%	14978 42% 19343 49% 17622
Balance peak demand to shall also be used to me Scenario 1-R Derived PLF Scenario 2-UR Derived PLF In case 85% peaking ava Scenario 1-R	be met b eet the ele 8730 63% 10855 64% ailability (a 10271	y coal bas ctricity de 8865 63% 10995 64% as per Fina 10429	eed source mand for 9062 61% 11279 63% al NEP'18 10661	es (after c coal. The 9016 58% 11249 61%) is also c 10607	derived P 9544 58% 11779 61% onsidered 11228	LF also g 9665 58% 12098 61% in the ab 11371	iven in the 10003 57% 12622 60% ove, the d 11768	e following 10543 56% 13355 59% erived co 12404	g 11087 55% 14107 59% al capacit 13044	11890 54% 15118 58% y is given 13989	12410 53% 15817 57% below: 14600	12938 51% 16549 56% 15221	13281 49% 17119 54% 15624	13787 47% 17854 53% 16220	14304 44% 18562 51% 16828	14978 42% 19343

In such a scenario wherein the PLFs are below 55%, there is a need to explore other peaking power sources than depending on coal based capacities only to meet the peak demand.


Based on the above results, the coal capacity required to meet peak demand, being the higher capacity, has been considered as the final capacity required for the state.

MW	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Tied up capacity	10226	10905	12291	12357	12857	12007	12007	12007	12007	12007	11604	11974	12082	12323	12527	12825
(Deficit)/ Excess	of coal c	apacities	5													
Scenario 1 – R	-45	476	1630	1750	1629	636	239	-397	-1037	-1982	-2996	-3247	-3542	-3897	-4301	-4797
Scenario 2 –UR	-2545	-2030	-978	-878	-1000	-2226	-2842	-3705	-4590	-5779	-7004	-7496	-8058	-8682	-9311	-9932

The present planning of tied up capacities for the state is based on non-consideration of baseline correction. In view of the same, a gap in supply side requirement is observed. Over the forecast period, the gap is increasing and will impact the planning of reserve capacities in the state. The shortage of tied up capacities will also impact the reliability of power supply in the state in the long term. Going ahead, all demand forecasting exercises should incorporate baseline correction of data in order to address the gap in capacities while planning the supply side generation sources.

10.4. Projected supply position in Rajasthan

The expected change in installed capacities of generation sources, in case current policies continue, is highlighted in the following figure. From a current scenario wherein installed capacity of coal based power plants constitute 54% and 29% from renewables, by the year FY32 RE may constitute up to 55% and share of coal will be 30% and balance will be met from hydro, gas and nuclear based power stations. Major installed capacity is expected to be from solar in the state.

However, coal will still be the dominant generation source in meeting the electricity demand of consumers. Currently as of FY17, with 54% share of installed capacity, electricity from coal based plants contributes upto 71% of the total requirements and same is expected to decrease up to 46% as of FY32.

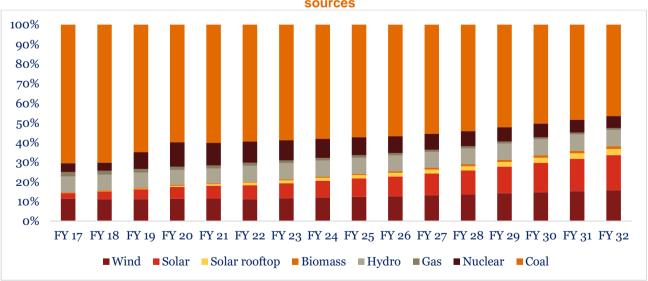
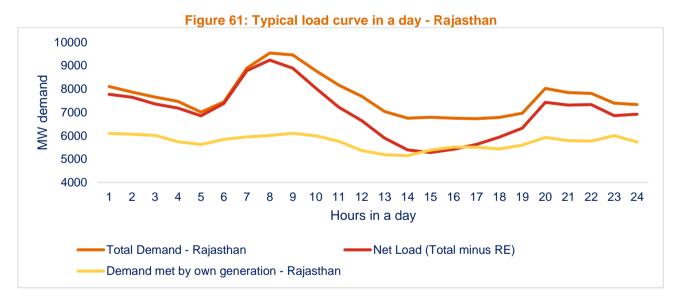
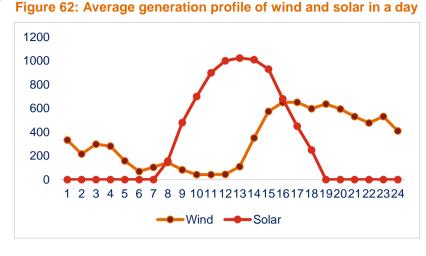


Figure 60: Scenario 1: Projected supply position (MUs) and electricity to be supplied by generation sources

For Scenario 2, the share of coal based capacity will decrease to 35% and renewables is expected to constitute 51% by FY32. The higher coal share than scenario 1 is due to higher requirement of coal based stations to meet the peak demand. The share of electricity from generation sources in this scenario will remain the same i.e. 46% from coal and 37% from renewable sources as of FY32.

10.5. Functional strategies for managing higher integration of renewables

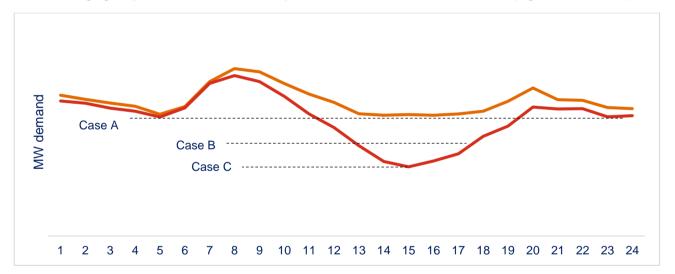

10.5.1. Managing the load curve


The increase in contribution of renewables will also bring with it more variability and uncertainty and the overall systems will require a change in order to effectively integrate the same. Electricity generation from renewables will vary over time in a day and over seasons and it is difficult to predict a specific trend unless short term demand forecasting is undertaken using advanced methods. While generation in solar is expected to mostly follow a fixed pattern in the day time, seasonal variation in it brings uncertainty and variability e.g. in monsoons. Similarly, generation from wind follows seasonal pattern - maximum during monsoon and having day wise variability also. Also generated electricity, power from other sources will have to be curtailed which brings in more balancing and ramping requirements. Generation from rooftop also is more localized and may involve bi-directional flow in comparison to conventional sources which requires planning of dispatch and availability of transmission networks.

Hence integration of renewables will bring with it greater challenges which have to be addressed in order to utilize the capacities in an optimized manner. This will require higher management of generation sources at the block levels in a day.

The following section will look into the possible scenarios of how the daily demand can be managed in event of a higher integration of renewables.

The typical demand profile in the state of Rajasthan and the average generation profile of solar and wind is as indicated in the figures below. Hourly generation is average generation profile of wind and solar. To calculate Net Load profile, RE generation is deducted from state's total demand profile.



In future years also, the state profile is expected to remain similar. From the profile, it can be seen that there are two peaks in a day which are to be addressed.

The state has implemented a rooster system for supplying to agriculture (more than ~40% of the state demand) and for other services (e.g. public water works). It also follows a loss based supply management in order to better address the peak demand. Hence, the morning peak (8-9 am) is mostly due to demand

from domestic consumers, industrial (e.g. start of production) and from commercial segments. The demand decreases and again reaches a peak around 7-9 pm. This variation in the daily load curve requires ramping and balancing requirements. In the present scenario, since share of renewables is lesser (~10% in MU terms), the ramping and balancing requirement is also less. However, with renewable contribution expected to reach ~32% by FY32, the requirements will be much higher.

In order to serve the variation in the load curve, the net demand, post usage of all renewable sources, shall be served by the conventional generation sources.

The following figure provides an illustration of probable curve and net demand curve (higher renewables).

The requirement of ramping and balancing will depend on where the base load (to be met by coal and nuclear sources) is fixed.

Case A

In the present case, the base load is considered near to the average load of the net demand curve. In this scenario, the complete base load requirements will be met from coal and nuclear sources and other variation will be met from hydro, gas, renewables and other short term market instruments. For a high renewable scenario, most of the renewable generation during the day will have to be either exported or additional storage requirements will have to be developed. In case of storage availability, electricity generated during the day can be stored and utilized to meet the demand of post afternoon and evening.

Requirements	
Ramping	Lower ramping up/ down will be required from coal based stations. Nuclear is more inflexible, hence more suitable for lesser variation.
Balancing	Balancing requirement from gas and hydro stations will be less. More in line with lower growth in installations of gas and hydro stations in the country
Storage	High storage requirement to utilize electricity from renewables. Otherwise excess renewable generation will have to exported to other states or to be utilized using short term market

Case B

Base load is considered as shown in the above illustration and it is planned to utilize higher renewables so as to meet the state demand than case A. This will involve lower quantum of export and facilities required for storage will also be lesser than case A. In case the cost of availing electricity through storage remains high, to meet up for the additional requirement during morning and evening, there will be requirement of flexible generators such as reservoir hydropower plants, gas based generating plants which could respond and adjust to the demand-supply fluctuations in a short time frame.

Requirements	
Ramping	Medium ramping requirement for coal based stations.
	Ramp up – to meet morning peak
	Ramp down – to accommodate renewable generation
	Ramp up – to meet evening peak in case of adequate balancing and storage requirements are not developed.
Balancing	Capacity of hydro and availability of gas based stations will have to be improved in this case to meet the increased ramping requirements in shorter time period.
Storage	Storage requirement to utilize electricity generated from renewables post evening and to reduce variability.

Case C

Base load to accommodate the maximum renewable energy consumption in the state.

Requirements	
Ramping	Higher ramping requirement for coal based stations. This requirement can be developed post analysis of minimum operating conditions of coal based power plants. Investments and retrofitting requirements and costs will have to be factored in.
Balancing	Capacity of hydro and availability of gas based stations will have to be improved so that system operators have the flexibility at hand in order to accommodate the renewable generation.
Storage	Storage requirement to reduce variability of renewable generation.

The above cases provides broad level strategies which will have to be undertaken in order to accommodate a high renewable scenario.

As per the Rajasthan State Renewable Energy Action Plan for Rajasthan, 2017, Rajasthan will require around 1.475 GW balancing reserve to meet net load ramp up/down requirement by FY22 incase renewable target for the state is met. The plan also provides the ramping requirements as of year FY22.

Туре	Time	Quantum	Reason
Ramp up	6 to 8 AM	~ 1000 MW	To meet morning peak
Ramp down	8 AM to 12 noon	~ 2200 MW	Mainly to accommodate increasing solar generation. In case base load is lowered further, higher ramp down than specified wil be required.
Ramp up	4 to 6 PM	~ 1000 MW	Due to dip in solar generation
Ramp up	6 to 8 PM	~ 500 MW	To meet evening peak

Table 78: Ramp up/ down requirement of Rajasthan as of FY22

Such ramping requirements will have to be addressed by developing flexible capacities in the state. The state is expected to have 830 MW as flexible generation capacity, for grid balancing by year 2019, hence additional 645 MW flexible energy forces will have to be developed to balance the grid with RE capacity addition.

The ramping requirements post FY22 up to FY32 will be far higher and additional market instruments, enhancement of technical capabilities and installation of more storage facilities etc. will have to be brought in to accommodate higher integration of renewables in the state.

10.5.2. Safe limit of RE integration without storage

Ministry of Power and USAID have undertaken a detailed study at National and Regional level (Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Volume I: National Study, Volume II: Regional study, June 2017) to evaluate pathways for RE integration by FY22. The study was focused at operational level and was undertaken considering various RE options but mostly the results pertain to the target of 175 GW installed capacity.

As per the study, by FY22, the integration of RE is possible with minimum of 1.4% curtailment. The results also highlighted that new fast-ramping infrastructure for the RE, such as storage, is not necessary to manage the added variability of wind and solar. With the expected transmission and generation capacities, system has the flexibility to manage added variability and uncertainty. The above conclusion is based on an analysis at national level and not restricted to a state. At a state level, a restricted study might not lead to an efficient result as a national level analysis will enable efficient operation and will provide the operator with greater options in flexibly managing the integration.

The study also highlighted that even though ramping requirement will increase by 27% at a national level, the same can be met using the ramping facilities of all generating stations. The minimum curtailment of 1.4% is based on the criteria that thermal plants won't operate below 55% as specified by CERC. In case further lowering is allowed, the curtailment can be brought down to 0.76%. In case battery storage is used, the curtailment of 1.4% can be reduced to 1.1%. However, batteries also have efficiency losses and energy lost in efficiency is expected to be higher than that lost due to curtailment.

The state specific results for Rajasthan are as given below:

Rajasthan can integrate the equivalent of 49% of total generation in the state by 2022 with 5.6% annual wind and solar curtailment. Currently, as of FY17, ~55% of the total requirement is generated from its own generating stations. Out of which ~ 16-18% is currently contributed from RE in the state. Higher RE contribution will lead to change in the generation mix in the state.

- Currently, around 5.6% of wind and solar is curtailed annually and most of these curtailments happen in majorly the same time. The report suggests that to overcome the same, more transmission planning will be required for better consumption and export of RE in the state.
- With respect to the present situation, by FY 22 the net imports to the state will decrease by 22% but exports will increase by 11%.
- The addition of RE in Rajasthan will change the net load, which is the load that is not met by RE and therefore must be met by conventional generation. Increased daytime solar generation causes a dip in net load, which requires Rajasthan to either increase net exports, back down its thermal generators, or curtail RE.
- The PLF of thermal power plants will decrease and generator starts will increase substantially
- Low hydro availability in the state will limit its usage in supporting the net load in the state
- For the state of Rajasthan, the high level of integration is possible by coordinated planning between all the stakeholders involved in intrastate transmissions. Further, investment in transmission infrastructure needs to look into so that RE can be evacuated and flexible reserves of coal and hydro can be used.
- The present study results highlight that additional storage facilities might not be required for integration up to FY22. However, post FY22, storage is expected to play a greater role.

10.5.3. Impact of storage in integration

Energy storage is likely to play a greater role in the power sector of the country in the medium and long term (post FY22). The drivers for grid-level energy storage are rapidly decreasing cost of energy storage, and the multitude of benefits provided by energy storage to the grid in general and to grids with high penetration of renewable energy in particular. Some of the benefits can be to optimize generation by reducing intermittency and variability, support in reliable operation of grid, frequency regulation, asset optimization in the form of supporting current balancing assets, reduction in peak demand, acting as reserve and helping in increasing consumption at a consumer level etc.

As of today, battery storage is considered expensive. However, for several storage technologies, it is expected that costs will fall with economies of scale. The prices of various storage technologies have fallen at different rates. For lithium ion batteries, prices have fallen by 73% between 2010 and 2017, as per Bloomberg New Energy Finance (BNEF), driven mostly by demand from electrical vehicles and improving technology, and are likely to fall by another 72% by 2030. BNEF's lithium-ion battery price index shows a fall from \$1,000 per kWh in 2010 to \$209 per kWh in 2017. International Renewable Energy Agency (IRENA) estimates that the prices of energy storage technologies are likely to fall between 50-66% ranges from the present prices by the year 2030, depending upon technology under consideration.

Taking India as an example, BNEF³⁴ in a recent study have highlighted that the benchmark levellised cost of electricity (LCOE) from various sources have been declining. BNEF had reported that LCOE for solar PV at \$41 per MWh (INR 2.75 per kWh), onshore wind at \$39 MWh (INR 2.61 per kWh), coal at \$68 per MWh (INR 4.56 per kWh) and combined cycle gas at \$93 per MWh (INR 6.23 per kWh). In comparison, in case battery storage is added to wind and solar, the costs for wind-plus-battery and solar-plus-battery systems in India have wide cost ranges, of \$34-208 per MWh (INR 2.28-13.94 per kWh) and \$47-308 per MWh (INR 3.15–20.64 per kWh) respectively, depending on project characteristics. Unless, the price stabilizes and becomes affordable, the adoption of storage will take some time. Meantime, storage options other than batteries will have to be utilized to meet the requirements. As per analysis, in case the price falls to \$90 per kWh, it is expected to be at par with current costs of coal-based stations operating at a base load condition with 60% PLF. Storage costs at \$147 per kWh is expected to be at par in case of peak load at 25% PLF.

³⁴ Tumbling costs for wind, solar, batteries are squeezing fossil fuels, 28 March, 2018

Alternate methodology for Electricity demand assessment and forecasting

Of the many storage options, hydro pumped storage has been prevalent in India. But for other storage systems like Lithium ion battery based, compressed storage, lead acid based etc., large scale implementation to support grid level balancing will require some time. The investment in other forms of storage technologies will require cost benefit analysis and careful selection of the technology.

As of 2017, as per IRENA, the following storage capacities have been announced, contracted and are under construction in India.

Table 79: Ann	ounced,	Contracted and Under	Construction Storage	Capacity by Technology Ty	уре
Count	ry	Electrochemical (unspecified)	Li Ion battery	Total (kW)	
India		111000	125	110125	

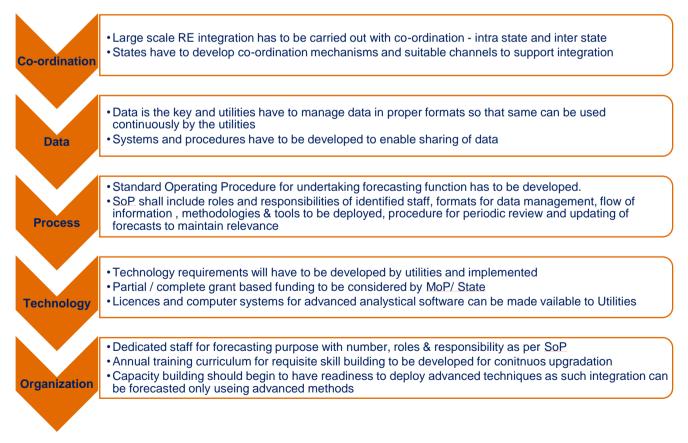
In January 2018³⁵, AES India and Mitsubishi corporation started construction of India's first utility scale energy storage system of 10 MW capacity that will serve the grid operated by Tata Power Delhi Distribution Limited. The project has been initiated to demonstrate energy storage and to help create a business case for future deployment.

In India, out of the available options, pumped storage has been used actively. At present ~ 4.785 GW capacity is pumped storage capacity, of which ~ 2.45 GW³⁶ is under operation. For the short term, plans may be developed to restore the available capacity of pumped storage for usage in balancing till other storage technologies are demonstrated and deployed. Even with decreasing costs, the technologies will have to undergo the phases of demonstration and deployment up to certain levels before it achieves maturity. Such installations will also have to be supported by policy and regulatory actions. NITI Aayog in November 2017 released a document highlighting the potential of battery manufacturing in India with possible pathways and possible policy measures and incentives. Though it was more towards supporting the goal of EVs in India by 2030, the development of domestic battery industry would also benefit the usage of batteries in grid balancing. CEA in January 2017 has also brought out a discussion paper highlighting the technologies along with possible operating models and requirements for implementation.

However, until a full-fledged deployment takes place, the balancing requirement till FY22 will have to be met using available sources. Some of the probable solutions which may be looked at:

- Ensuring gas availability will enable substantial installed capacities of gas based plants to support in grid balancing
- Possible retrofitting options to support flexible operation in new power plants may be checked so that by the time the plants are commissioned, it can support higher flexibility
- Strengthening of market instruments short term, power exchanges, ancillary market etc.
- Capacity building in utilities for undertaking forecasting and planning

³⁵ India's first grid-scale electricity storage system, January 2018 accessed from The Economic Times


³⁶ Report on Operational Analysis for Optimization of Hydro Resources & facilitating Renewable Integration in India, June 2017

10.5.4. Need for capacity building

The integration of RE will also call for usage of advanced forecasting in order to plan for power procurement and investment. Forecasting will have an increasingly important role in the grid with the increase in proportion of RE. Since solar, wind and hydro energy are dependent on highly variable weather conditions, usage of short term forecasting involving modeling of weather parameters will be crucial going ahead. Hence it is essential that utilities start capturing data and develop capacities.

Currently, most of the utilities do not have the expertise to forecast and plan. Hence, capacity building will have to be undertaken. Broadly, following major heads have been identified across which work has to be done in order:

11. Data challenges

The study involved extensive use of data which were accessed from various sources. However, challenges were encountered while accessing and using data. Summary of challenges are highlighted in the following section:

1. Historical data from utilities

- The utilities don't have any formal process through which data for the required period could be accessed for conducting the study. There was no designated official responsible for providing data for such a study
- There was resistance in sharing of data for the study. Concerns regarding usage of the data/ purpose was raised at various levels
- Required data (sales, consumers etc.) was not available for a longer duration for all the three utilities in the state. Hence a common period of ten years had to be considered.
- Data is not maintained in common formats. Every utility had its own formats of reporting and data storage. This requires additional time in checking and validation of data and to develop a common format for use in forecasting.

2. Challenges at feeder level data

- Supply hour data at feeder level was available only for few selected feeders and in limited circles
- Historical supply hour data at feeder level is not available. Hence suitable assumptions had to be built in for undertaking baseline correction.
- Feeder level data has interruption counts of supply and doesn't directly provide gap in supply hours for consumer categories
- Category (industry/ agriculture etc.) and area wise (urban/ rural) segregation of feeders was not present.
 Hence details of supply hour gaps in specific categories could not be worked out.
- Data not available in any definite format. The formats varied across utilities and across months.
- Since installed feeders are also of varied make and models even in the same utility, the outputs provided were varied. In few feeders, OEM software are required to access data.

3. Challenges in application of forecasting methodology

- Challenge in accessing data for independent variables at a granular level e.g. District/ circle.
- Data pertaining to disposable income, historical weather parameters at granular level were not available.
- No definite source for accessing data for estimating power demand from infrastructure projects or HT Industries. In most of the Government offices, there is no designated authority responsible for storage and upkeep of data pertaining to future projects in the state.
- Challenges were encountered in receiving responses for surveys and during data collection from HT industries and bulk consumers.
- No conclusive study could be found to establish the effect of energy efficiency. Various studies projected different efficiency potentials and scenarios.
- T&D loss data available at a state level. Segregated data pertaining to technical losses due to theft, faulty reading etc. are not maintained.
- Data for load factor and diversity factor is available only at a yearly average level for the state/ region.

12. Recommendations

The demand forecasting study using the proposed alternate methodology has involved analysis of extensive data pertaining to various parameters and for various consumer categories. The methodology has been proposed considering the gaps which were highlighted in traditional methodologies. Development of the forecast including baseline correction has been based on availability of data which could be accessed. However, challenges still remain and will have to be addressed in case similar studies are undertaken in future.

Based on the present study, following are the recommendations which may be looked into:

1. Changes at Policy/ regulatory level

Insufficient/ lack of authentic data is the weakest link for any forecasting study. There are no standard formats available for capturing of data by the Utilities. The issue may be taken up at policy level viz. CEA/ Electricity Regulators may propose data recording by Utilities in standard formats.

Suggested data formats have been appended below.

2. Establishment of designated authority for data management

Establishment of designated authority (e.g. MIS cell) for managing data is required at DISCOM/ STU level. Such authority shall record and maintain data in standard formats and also should be responsible for periodic updating of the data. It should be the single point of contact for third parties to access data. A governance structure should be in place, which will be responsible for according approvals post validation checks. This will enable better accessibility of required data and also remove data concerns which are currently being experienced at various levels.

3. Increased granularity of forecasts

Presently, forecasts are majorly carried out at the Utility or State level. The granularity of the forecasts needs to be increased by conducting demand forecasting at district level or below (like divisional/sub divisional level) for better understanding of the behavior and trends and for higher accuracy and use of the results. Study at a more granular level would be possible only with availability of data at such levels.

4. Periodicity of forecasts to be increased to shorter duration

Currently demand forecasting is carried out after a period of 5 to 10 years. The exercise needs to be undertaken at shorter period e.g. yearly, to take into account changes in the factors affecting demand. There should also be a periodic review and updating of the forecasted demand.

5. Use of advanced methods

It is recommended that use of advanced statistical methods should be encouraged. In a recent meet of the Hon'ble Minister for Power with the Regulators and State DISCOMs, it was mentioned that the DISCOMSs should be mandated to deploy advanced statistical tools for undertaking demand forecasting and power procurement planning exercises, the funding of which may be availed from the PSDF fund.

6. Shift towards technological/ Data and Analytics platforms

The idea of undertaking demand forecasting is to effectively plan for infrastructure and capex, optimize costs, understand future requirements and plan for power procurement. In a scenario, wherein the future demand will involve interplay for many factors, it is important that forecasting should be undertaken in technology enabled solutions e.g. forecasting software that is more dynamic and responsive to changes. Such a transition will also help in improved dash boarding of results.

7. Pilot studies for assessing latent demand

It is recommended that pilot studies may be conducted to understand the factors affecting latent demand across consumer categories.

8. Use of the alternate methodology in other states

The proposed alternate methodology has been implemented only on the selected state. Enabling capturing of required data in standard templates can prepare replicable model for baseline correction.

9. Use of baseline correction to undertake forecasts for Rajasthan

It is recommended that while conducting supply side planning for tying up generation capacities, a baseline correction based approach should be followed in order to minimize the gaps between the actual demand and required tied up capacities.

13. Annexure

13.1. Forecast results – Circle wise

13.1.1. Alwar

				Table 80:	Alwar - F	orecast o	of electric	:ity consເ	umption u	using trer	d method	ł				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	545	629	728	846	987	1142	1330	1558	1839	2190	2632	3199	3937	4916	6231	7973
Non-Domestic	190	209	229	251	275	293	312	331	352	373	390	407	424	442	459	477
Public Street Light	11	12	13	14	15	15	15	15	14	14	13	13	12	11	9	8
Agriculture (M + N + P))	1441	1540	1644	1755	1871	2038	2218	2412	2620	2844	3085	3342	3617	3911	4224	4557
Agriculture (F)	23	19	16	14	12	9	8	6	5	4	3	2	1	1	1	1
Industry (Small + Med)	193	198	203	208	214	222	231	240	250	259	270	280	291	302	313	325
Industry (L)	1943	2086	2239	2403	2578	2660	2744	2830	2919	3009	3102	3197	3294	3394	3495	3599
PWW (S + M + L)	47	49	52	55	58	60	63	67	70	73	76	80	83	87	91	95
Mixed Load	21	22	23	24	25	25	25	25	25	24	24	24	24	24	24	24
Total electricity consumption	4414	4764	5148	5569	6034	6465	6945	7484	8093	8791	9595	10544	11685	13087	14848	17059

				Table 81	: Alwar -	Forecast	of electri	city cons	umption	using HV	/ method					
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	591	630	669	708	747	786	825	864	904	943	982	1021	1060	1099	1138	1177
Non-Domestic	236	256	276	296	316	336	356	376	396	416	436	456	476	496	516	536
Public Street Light	10	10	11	12	12	13	14	15	15	16	17	17	18	19	20	20
Agriculture (M + N + P))	2276	2420	2565	2710	2854	2999	3144	3288	3433	3578	3722	3867	4012	4156	4301	4446
Agriculture (F)	33	35	36	38	39	40	42	43	45	46	47	49	50	51	53	54
Industry (Small + Med)	194	203	212	220	229	238	247	256	265	274	282	291	300	309	318	327
Industry (L)	1829	1952	2074	2197	2319	2442	2564	2687	2809	2932	3054	3177	3299	3422	3544	3666
PWW (S + M + L)	48	51	55	58	62	65	69	72	75	79	82	86	89	93	96	100
Mixed Load	38	48	55	61	67	72	76	81	85	89	93	96	100	103	107	110
Total electricity consumption	5254	5604	5952	6299	6645	6991	7336	7681	8026	8371	8715	9060	9404	9748	10092	10436

			Tab	le 82: Alw	var - Fore	cast of el	ectricity	consump	tion using	g econon	netric me	thod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	506	550	595	641	688	736	785	834	883	932	980	1027	1072	1114	1152	1175
Non-Domestic	217	244	273	305	340	376	416	458	504	553	595	640	687	736	789	862
Public Street Light	9	10	11	12	12	13	13	14	15	15	16	16	16	17	17	17
Agriculture (M + N + P))	1691	1820	1954	2089	2229	2369	2515	2660	2808	2959	3115	3271	3429	3590	3753	3919
Agriculture (F)	25	26	28	29	30	32	33	35	36	38	40	41	43	44	46	48
Industry (Small + Med)	191	195	198	201	203	204	205	204	202	199	194	187	178	166	151	133
Industry (L)	1820	1942	2064	2186	2305	2427	2549	2671	2792	2911	3033	3154	3276	3398	3516	3637
PWW (S + M + L)	49	54	59	65	72	80	89	100	112	126	142	160	181	205	233	265
Mixed Load	37	47	54	60	66	71	75	80	84	87	91	95	98	102	105	108
Total electricity consumption	4545	4888	5237	5588	5945	6308	6680	7055	7436	7820	8205	8591	8980	9373	9762	10163

13.1.2. Bharatpur & Dholpur

Table 83: Bharatpur and Dholpur - Forecast of electricity consumption using trend method (MUs) FY 17 FY 18 FY 20 FY 21 FY 22 FY 23 FY 24 FY 25 FY 26 FY 28 FY 29 FY 30 FY 31 FY 32																
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	353	389	428	468	510	541	571	597	619	636	646	647	638	618	587	537
Non-Domestic	81	87	93	100	107	116	126	136	147	159	172	186	200	215	232	249
Public Street Light	13	13	13	14	14	14	14	13	13	13	12	11	10	10	8	7
Agriculture (M + N + P))	399	429	462	497	534	565	597	631	666	702	726	750	774	798	822	845
Agriculture (F)	18	16	15	13	12	9	8	6	5	4	3	2	1	1	1	0
Industry (Small + Med)	84	87	89	91	93	96	98	101	103	106	108	111	114	116	119	122
Industry (L)	168	175	182	189	197	202	207	213	218	223	229	235	240	246	252	258
PWW (S + M + L)	43	46	50	53	57	59	61	63	65	67	69	72	74	76	78	81
Mixed Load	10	10	10	10	10	10	10	10	10	10	10	10	10	10	9	9
Total electricity consumption	1170	1253	1342	1436	1534	1612	1691	1769	1846	1920	1975	2022	2061	2090	2108	2108

			Table 84	I: Bharatp	our and D	holpur - I	Forecast	of electri	city cons	umption	using HW	method				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	414	444	475	505	535	565	596	626	656	686	717	747	777	808	838	868
Non-Domestic	118	127	135	144	152	160	168	176	184	192	200	207	215	222	230	237
Public Street Light	17	20	22	24	26	28	30	31	33	34	36	37	38	40	41	42
Agriculture (M + N + P))	554	593	632	671	711	750	789	829	868	907	947	986	1025	1064	1104	1143
Agriculture (F)	25	23	21	19	17	14	12	10	8	6	0	0	0	0	0	0
Industry (Small + Med)	92	102	112	122	134	146	159	172	186	201	217	232	249	266	284	302
Industry (L)	172	192	212	232	253	273	293	313	333	353	373	393	414	434	454	474
PWW (S + M + L)	48	57	63	68	73	78	82	86	90	93	97	100	103	107	110	113
Mixed Load	10	11	12	12	13	14	14	15	16	16	17	17	18	19	19	20
Total electricity consumption	1450	1568	1684	1799	1914	2028	2143	2258	2374	2490	2602	2721	2840	2959	3079	3199

(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	337	367	397	428	460	492	525	558	591	624	656	688	719	747	773	791
Non-Domestic	81	89	97	105	115	124	134	145	156	167	179	192	205	219	233	248
Public Street Light	12	13	14	15	16	17	18	19	21	22	23	24	25	26	27	28
Agriculture (M + N + P))	396	430	465	498	530	561	590	615	636	652	663	666	660	644	614	570
Agriculture (F)	18	17	15	14	13	11	10	8	7	5	0	0	0	0	0	0
Industry (Small + Med)	87	88	90	90	91	91	91	90	89	87	85	83	80	76	71	66
Industry (L)	163	169	176	182	189	196	203	211	218	226	234	242	251	259	268	277
PWW (S + M + L)	43	44	46	48	49	50	50	50	50	49	47	45	41	37	31	24
Mixed Load	10	11	12	12	13	13	14	15	15	16	17	17	18	18	19	20
Total electricity consumption	1147	1229	1311	1393	1475	1556	1635	1711	1782	1848	1905	1957	1998	2026	2037	2024

13.1.3. Dausa and Karauli

			Table 8	86: Dausa	and Kar	uali - Fore	ecast of e	electricity	consum	otion usi	ng trend i	nethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	268	301	337	375	415	445	473	500	524	543	556	563	560	548	529	488
Non-Domestic	73	80	88	96	105	117	130	145	161	178	198	219	242	268	296	326
Public Street Light	8	8	8	8	8	8	8	8	7	7	7	6	6	5	4	4
Agriculture (M + N + P))	695	743	793	846	902	945	988	1033	1078	1125	1172	1221	1270	1319	1369	1420
Agriculture (F)	35	29	24	20	17	13	10	8	6	5	3	2	2	1	1	1
Industry (Small + Med)	58	62	66	71	76	81	87	93	99	106	113	120	128	137	146	156
Industry (L)	57	63	69	75	82	87	93	99	105	112	119	126	134	142	151	160
PWW (S + M + L)	35	36	38	40	42	43	45	46	48	49	51	52	53	55	56	58
Mixed Load	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Total electricity consumption	1235	1328	1429	1537	1653	1745	1839	1936	2033	2130	2224	2315	2401	2480	2558	2618

			Table	87: Daus	a and Ka	rauli - Fo	recast of	electricit	y consum	nption us	ing HW m	ethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	282	305	328	351	374	397	419	442	465	488	511	534	557	579	602	625
Non-Domestic	132	167	193	216	237	256	275	292	309	325	341	356	371	386	400	414
Public Street Light	12	13	15	17	19	21	23	25	28	30	33	36	38	41	44	47
Agriculture (M + N + P))	1003	1071	1139	1207	1275	1343	1410	1478	1546	1614	1682	1750	1818	1886	1954	2022
Agriculture (F)	36	21	6	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	60	63	66	69	72	75	78	81	84	87	90	93	96	100	103	106
Industry (L)	54	55	56	57	58	59	60	62	63	64	65	66	67	68	69	70
PWW (S + M + L)	41	42	43	45	46	47	48	49	50	51	52	54	55	56	57	58
Mixed Load	8	10	12	14	16	18	20	23	25	28	31	34	37	41	46	50
Total electricity consumption	1628	1747	1859	1975	2096	2216	2334	2453	2571	2688	2805	2923	3040	3157	3275	3393

(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
(1100)																
Domestic	243	265	289	315	341	369	398	428	460	492	525	558	592	626	658	689
Non-Domestic	67	72	77	82	88	94	100	107	113	120	128	135	143	151	160	168
Public Street Light	8	9	11	13	15	17	19	22	25	29	32	36	41	45	50	56
Agriculture (M + N + P))	802	883	969	1057	1149	1242	1339	1435	1531	1627	1724	1815	1902	1983	2055	2116
Agriculture (F)	25	15	5	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	62	68	74	81	88	95	104	113	123	133	145	157	171	185	201	218
Industry (L)	54	55	56	57	58	59	60	61	62	63	64	66	67	68	69	70
PWW (S + M + L)	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56
Mixed Load	8	10	12	14	16	18	20	22	25	27	30	33	37	40	45	49
Total electricity consumption	1309	1420	1536	1663	1800	1941	2087	2236	2388	2542	2699	2853	3005	3152	3292	3421

13.1.4. Jaipur city circle

				Table 89	: JCC - Fo	orecast of	f electrici	ty consu	mption us	sing trend	d method					
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	1802	1907	2010	2111	2185	2246	2294	2326	2338	2328	2299	2240	2150	2025	1868	1681
Non-Domestic	1123	1200	1281	1367	1458	1542	1630	1722	1817	1916	2018	2124	2233	2346	2461	2579
Public Street Light	87	88	89	90	91	87	82	78	73	67	62	56	50	44	37	31
Agriculture (M + N + P))	28	29	30	31	31	32	33	34	34	35	36	36	37	37	38	38
Agriculture (F)	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	276	278	281	284	286	295	303	312	321	330	340	349	359	369	379	390
Industry (L)	577	602	629	657	686	697	707	718	729	740	751	762	772	783	794	805
PWW (S + M + L)	124	125	125	126	126	128	129	131	132	133	134	135	136	137	138	138
Mixed Load	85	87	90	92	94	97	99	102	104	106	109	111	113	115	117	119
Total electricity consumption	4103	4317	4536	4758	4959	5123	5278	5421	5548	5656	5748	5814	5850	5857	5833	5781

				Table 9	0: JCC - F	Forecast o	of electric	ity consu	umption ι	ising <u>H</u> W	method					
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	1934	2040	2145	2251	2357	2463	2568	2674	2780	2886	2991	3097	3203	3309	3414	3520
Non-Domestic	1289	1342	1396	1450	1504	1557	1611	1665	1718	1772	1826	1880	1933	1987	2041	2095
Public Street Light	101	106	110	115	119	124	128	132	137	141	146	150	155	159	164	168
Agriculture (M + N + P))	60	61	62	63	64	65	66	67	67	68	69	70	70	71	72	72
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	350	351	355	360	369	380	394	410	427	447	468	490	513	538	563	590
Industry (L)	657	721	791	869	955	1048	1148	1255	1368	1487	1612	1742	1878	2019	2166	2317
PWW (S + M + L)	126	129	132	134	137	140	143	145	148	151	154	157	159	162	165	168
Mixed Load	91	101	112	122	132	142	152	163	173	183	193	204	214	224	234	245
Total electricity consumption	4608	4851	5102	5364	5636	5918	6210	6510	6819	7135	7459	7789	8126	8469	8819	9174

			Tat	ole 91: JC	C - Forec	ast of ele	ectricity c	onsumpt	ion using	j econom	etric met	hod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	1793	1917	2045	2174	2284	2392	2499	2605	2707	2808	2901	2991	3074	3147	3207	3256
Non-Domestic	1096	1187	1282	1379	1481	1586	1695	1807	1922	2041	2166	2293	2425	2560	2700	2844
Public Street Light	100	104	109	113	117	120	124	128	131	134	137	139	141	142	143	142
Agriculture (M + N + P))	44	46	47	49	50	51	53	54	55	56	58	59	60	61	62	64
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	349	350	353	358	366	378	391	407	425	444	464	486	510	534	559	585
Industry (L)	654	717	787	865	949	1041	1141	1247	1359	1476	1600	1730	1865	2005	2148	2298
PWW (S + M + L)	127	132	138	145	154	164	176	191	207	227	249	275	305	339	378	423
Mixed Load	90	100	110	120	130	140	150	160	170	180	190	200	210	220	230	239
Total electricity consumption	4253	4553	4871	5203	5531	5873	6230	6598	6978	7366	7766	8174	8589	9008	9426	9851

13.1.5. JPDC

				l able 92:	JPDC - F	orecast o	of electric	ity consu	imption u	ising tren	d method	1				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	471	518	567	618	671	724	776	826	871	910	940	957	951	927	885	825
Non-Domestic	224	244	266	290	316	344	374	406	441	479	519	562	607	656	708	764
Public Street Light	9	9	10	10	10	10	10	10	10	9	9	9	8	8	7	6
Agriculture (M + N + P))	1063	1143	1229	1320	1417	1500	1587	1678	1772	1870	1971	2076	2184	2295	2410	2527
Agriculture (F)	354	314	277	245	216	173	139	111	89	71	49	34	24	17	12	8
Industry (Small + Med)	142	149	157	164	172	176	181	185	189	194	198	203	208	212	217	222
Industry (L)	620	658	698	740	784	802	821	840	859	878	898	918	938	958	978	999
PWW (S + M + L)	57	60	64	68	72	77	81	86	91	97	102	108	114	120	126	133
Mixed Load	9	10	11	11	12	13	14	14	15	16	17	18	19	20	22	23
Total electricity consumption	2950	3105	3278	3467	3671	3819	3982	4156	4337	4523	4703	4884	5053	5214	5366	5506

				Table 93	: JPDC -	Forecast	of electri	city cons	umption	using HV	/ method					
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	461	511	561	610	660	710	760	809	859	909	958	1008	1058	1108	1157	1207
Non-Domestic	275	295	314	334	353	373	392	412	431	450	470	489	509	528	548	567
Public Street Light	8	9	9	10	10	11	11	12	13	13	14	14	15	15	16	16
Agriculture (M + N + P))	1781	1975	2169	2363	2557	2751	2945	3139	3333	3527	3721	3915	4109	4303	4497	4691
Agriculture (F)	252	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	165	178	194	211	229	249	269	290	312	335	359	383	408	434	460	487
Industry (L)	614	664	714	764	814	864	914	964	1014	1064	1114	1164	1214	1264	1314	1364
PWW (S + M + L)	58	63	67	72	76	81	85	89	94	98	103	107	112	116	121	125
Mixed Load	11	13	15	17	19	21	23	25	28	30	32	34	36	38	40	42
Total electricity consumption	3626	3747	4044	4381	4720	5059	5400	5741	6083	6426	6770	7115	7460	7806	8153	8500

			Tab	le 94: JPI	DC - Fore	cast of el	ectricity	consump	tion using	g econon	netric met	thod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	466	519	578	642	712	789	872	963	1062	1170	1285	1409	1527	1650	1778	1910
Non-Domestic	243	274	310	349	393	440	493	551	615	685	762	846	937	1037	1147	1266
Public Street Light	8	9	10	11	12	13	14	15	16	17	19	20	21	23	24	26
Agriculture (M + N + P))	1009	1115	1224	1333	1444	1552	1660	1761	1855	1940	2014	2070	2105	2114	2091	2029
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	150	159	168	178	187	196	206	216	227	237	247	258	269	281	292	303
Industry (L)	611	661	711	761	809	859	909	958	1008	1057	1106	1156	1206	1255	1304	1353
PWW (S + M + L)	58	62	66	71	75	79	83	88	92	96	100	104	108	112	116	120
Mixed Load	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41
Total electricity consumption	2556	2813	3083	3361	3651	3951	4261	4579	4903	5231	5565	5896	6209	6509	6790	7048

13.1.6. Jhalawar and Baran

			Table 9	5: Jhalaw	ar and Ba	aran - Foi	recast of	electricity	/ consum	ption usi	ing trend	method				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	272	296	320	345	371	409	448	487	526	561	593	617	629	627	612	583
Non-Domestic	73	77	82	87	92	96	100	105	109	114	119	123	128	133	138	143
Public Street Light	15	16	16	17	18	17	17	17	16	16	15	14	13	12	10	9
Agriculture (M + N + P))	856	917	981	1048	1120	1174	1230	1288	1347	1408	1470	1533	1597	1662	1728	1795
Agriculture (F)	3	2	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	58	60	63	66	68	69	70	71	72	73	74	75	76	77	78	79
Industry (L)	64	68	72	77	82	86	89	93	97	102	106	110	115	120	125	130
PWW (S + M + L)	29	30	32	34	36	38	40	42	45	47	50	52	55	58	60	63
Mixed Load	11	11	12	13	14	16	17	19	21	23	25	27	30	33	36	39
Total electricity consumption	1380	1477	1580	1688	1801	1906	2013	2123	2234	2343	2451	2553	2644	2722	2789	2842

			Tab	le 96: Jha	lawqr and	l Baran - F	Forecast c	of electricit	y consum	ption usin	ng HW me	thod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	296	320	344	367	391	415	438	462	486	510	533	557	581	605	628	652
Non-Domestic	72	78	84	90	96	102	108	114	120	126	132	138	144	150	156	162
Public Street Light	20	25	30	35	40	45	49	54	59	64	69	74	79	83	88	93
Agriculture (M + N + P))	1192	1279	1367	1455	1543	1631	1718	1806	1894	1982	2070	2157	2245	2333	2421	2509
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	89	89	90	91	93	96	100	104	110	116	123	130	137	145	154	163
Industry (L)	75	90	105	120	135	150	165	180	195	210	226	241	256	271	286	301
PWW (S + M + L)	26	28	30	32	34	36	38	39	41	43	45	47	49	51	52	54
Mixed Load	11	12	13	14	15	16	17	18	19	20	22	23	24	25	26	27
Total electricity consumption	1781	1921	2062	2204	2346	2490	2634	2779	2925	3071	3218	3366	3514	3662	3811	3960

(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
(1103)		1110	1115	1120	1121	1122	1125	1124	1125	1120	1121	1120	1123	11.50	1151	11.52
Domestic	245	262	279	296	311	330	348	366	383	398	408	417	419	418	415	409
Non-Domestic	54	60	65	71	76	82	88	94	100	106	113	119	126	132	139	146
Public Street Light	20	25	30	34	39	43	48	52	57	61	65	68	72	75	77	79
Agriculture (M + N + P))	757	848	944	1043	1148	1255	1367	1480	1595	1711	1829	1944	2055	2162	2261	2350
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	88	89	89	91	93	95	99	104	109	115	122	129	136	144	153	162
Industry (L)	75	90	105	120	134	149	164	179	194	209	224	239	254	269	283	298
PWW (S + M + L)	26	28	30	32	33	35	37	39	40	42	44	45	47	49	50	52
Mixed Load	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Total electricity consumption	1277	1413	1554	1699	1849	2007	2169	2333	2498	2663	2825	2984	3132	3273	3403	3521

13.1.7. Kota and Bundi

			Table	98: Kota	and Bun	di - Fored	cast of ele	ectricity o	onsumpt	tion using	g trend m	ethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	699	756	814	874	933	987	1038	1083	1120	1148	1153	1141	1111	1063	996	910
Non-Domestic	239	255	273	291	310	339	372	406	444	485	528	576	627	681	740	803
Public Street Light	33	34	36	37	38	40	40	41	42	42	41	40	39	37	34	30
Agriculture (M + N + P))	723	778	837	900	967	1063	1167	1281	1405	1539	1685	1843	2013	2197	2395	2608
Agriculture (F)	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	223	232	241	250	259	269	279	290	300	312	323	335	347	360	372	386
Industry (L)	414	429	445	462	480	497	516	535	555	575	596	617	640	662	686	710
PWW (S + M + L)	72	76	81	85	90	92	95	97	99	102	104	106	108	111	113	115
Mixed Load	29	29	29	29	29	29	29	29	30	30	29	29	28	28	27	26
Total electricity consumption	2432	2590	2756	2928	3106	3317	3536	3763	3995	4231	4460	4687	4913	5138	5363	5588

			Tabl	e 99: Kot	a and Bu	ndi - Fore	ecast of e	lectricity	consump	otion usin	ig HW me	thod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	749	799	849	899	949	999	1049	1099	1149	1199	1248	1298	1348	1398	1448	1498
Non-Domestic	317	340	362	385	407	430	453	475	498	521	543	566	588	611	634	656
Public Street Light	36	38	41	44	47	49	52	55	58	60	63	66	69	71	74	77
Agriculture (M + N + P))	970	1050	1131	1211	1292	1372	1453	1534	1614	1695	1775	1856	1937	2017	2098	2178
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	227	239	251	263	275	287	298	310	322	334	346	358	370	381	393	405
Industry (L)	397	407	417	427	437	448	458	468	478	488	499	509	519	529	539	550
PWW (S + M + L)	74	81	87	93	99	105	111	118	124	130	136	142	148	155	161	167
Mixed Load	26	24	21	19	16	13	11	8	6	5	4	5	6	8	11	13
Total electricity consumption	2796	2978	3159	3341	3522	3704	3885	4066	4249	4432	4615	4799	4985	5171	5358	5544

			Table 100	: Kota an	d Bundi -	- Forecas	t of elect	ricity con	sumptior	n using e	conometri	ic methoo	1			
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	745	802	863	926	991	1055	1121	1190	1259	1331	1393	1450	1506	1559	1607	1658
Non-Domestic	234	262	293	325	359	390	423	458	494	532	573	615	659	706	755	814
Public Street Light	37	41	46	51	57	64	71	79	87	97	107	118	130	142	155	168
Agriculture (M + N + P))	702	770	843	920	1005	1073	1146	1223	1303	1388	1478	1573	1672	1777	1887	2038
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	234	245	256	268	279	291	303	315	327	340	353	366	379	393	406	421
Industry (L)	395	405	415	425	435	445	455	465	475	485	495	505	515	525	535	545
PWW (S + M + L)	74	80	86	92	98	104	109	115	121	127	133	138	144	149	155	160
Mixed Load	26	24	21	18	16	13	10	8	6	5	4	5	6	8	10	13
Total electricity consumption	2447	2629	2822	3025	3239	3434	3639	3851	4073	4303	4535	4769	5011	5259	5510	5817

13.1.8. Sawai Madhopur and Tonk

			Table 10	1: Sawai	Madhopur	and Tonk	k - Foreca	st of elect	ricity cons	sumption (using trend	d method				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	350	377	404	432	459	485	509	530	548	561	567	566	556	534	500	456
Non-Domestic	89	96	102	110	117	127	137	148	160	173	186	200	215	232	248	266
Public Street Light	8	9	9	9	10	10	10	10	10	10	10	9	9	8	7	7
Agriculture (M + N + P))	394	438	487	540	598	651	707	767	831	900	974	1053	1137	1227	1322	1423
Agriculture (F)	9	7	6	5	5	4	3	2	2	1	1	1	0	0	0	0
Industry (Small + Med)	34	35	36	37	38	39	40	42	43	44	45	47	48	49	51	52
Industry (L)	167	178	189	201	214	224	233	244	254	265	277	288	301	313	327	340
PWW (S + M + L)	154	170	188	207	229	237	246	254	263	272	281	290	299	308	317	326
Mixed Load	7	8	8	9	9	10	10	10	11	11	11	12	12	12	13	13
Total electricity consumption	1213	1317	1430	1551	1680	1786	1895	2008	2122	2237	2352	2466	2578	2684	2785	2883

			able 102:	Sawai M	adhopur	and Tonk	- Foreca	st of elec	tricity co	nsumptic	on using H	-IW metho	d			
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	323	353	383	413	443	473	503	533	563	593	623	654	684	714	744	774
Non-Domestic	112	117	123	129	134	140	145	151	157	162	168	173	179	185	190	196
Public Street Light	9	11	12	13	14	15	16	17	19	20	21	22	23	24	25	27
Agriculture (M + N + P))	572	614	656	698	740	782	824	866	908	950	992	1034	1076	1118	1160	1202
Agriculture (F)	11	8	5	1	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	42	42	43	44	45	45	46	47	47	48	49	50	50	51	52	52
Industry (L)	155	157	160	162	164	166	168	171	173	175	177	179	181	184	186	188
PWW (S + M + L)	139	146	154	161	169	177	184	192	199	207	215	222	230	237	245	253
Mixed Load	11	14	16	18	20	22	24	26	28	30	32	34	37	39	42	45
Total electricity consumption	1373	1462	1551	1638	1728	1820	1911	2002	2094	2185	2277	2368	2460	2552	2644	2736

		Iaple	103: Saw		pui anu			electricit	y consun	iption us	ing econd		emou			
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	352	385	420	455	490	527	564	601	638	675	712	760	787	812	833	851
Non-Domestic	83	90	98	106	115	124	134	144	155	166	178	191	204	218	233	249
Public Street Light	9	11	12	14	15	17	19	22	24	27	30	33	37	40	44	48
Agriculture (M + N + P))	291	331	374	419	466	516	568	622	678	735	795	856	917	979	1041	1101
Agriculture (F)	7	5	3	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	42	42	43	44	44	45	46	46	47	48	48	49	50	51	51	52
Industry (L)	154	157	159	161	163	165	167	169	172	174	176	178	180	182	184	187
PWW (S + M + L)	148	169	192	218	247	280	316	356	401	450	506	568	637	713	799	894
Mixed Load	11	14	16	18	20	21	23	25	27	29	32	34	36	39	41	44
Total electricity consumption	1098	1205	1317	1434	1561	1695	1836	1985	2141	2305	2477	2669	2849	3035	3227	3426

13.1.9. Ajmer

			Т	able 104:	Ajmer - I	Forecast	of electri	city cons	umption	using tre	nd metho	d				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	577	621	665	709	753	800	845	885	919	946	971	984	974	944	896	830
Non-Domestic	216	240	267	296	329	345	361	377	394	412	430	448	466	485	504	523
Public Street Light	12	13	13	14	14	15	15	15	15	15	14	14	13	12	11	10
Agriculture (M + N + P))	187	210	236	265	297	328	362	400	441	485	534	587	645	707	775	848
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	324	339	356	373	392	413	436	459	484	511	538	567	597	629	662	697
Industry (L)	531	557	585	614	645	677	710	745	781	819	871	925	983	1044	1109	1177
PWW (S + M + L)	124	132	140	149	158	160	161	163	164	165	165	165	165	164	162	160
Mixed Load	37	39	41	43	45	45	45	45	45	45	45	45	45	44	44	44
Total electricity consumption	2008	2151	2303	2464	2632	2782	2934	3089	3244	3397	3568	3735	3888	4030	4164	4289

				Table 105	i: Ajmer -	Forecast	t of electr	icity con	sumption	using H	N method	I				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	652	714	762	803	840	874	906	936	965	992	1018	1043	1067	1091	1114	1136
Non-Domestic	267	282	297	312	327	342	356	371	386	401	416	431	446	461	476	491
Public Street Light	13	13	14	15	16	17	17	18	19	20	21	21	22	23	24	25
Agriculture (M + N + P))	260	286	311	336	362	387	412	438	463	489	514	539	565	590	615	641
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	327	344	360	377	394	410	427	443	460	477	493	510	526	543	560	576
Industry (L)	551	588	625	662	700	737	774	812	849	886	924	961	998	1035	1073	1110
PWW (S + M + L)	127	136	144	153	162	171	180	189	197	206	215	224	233	242	250	259
Mixed Load	34	34	33	32	32	31	31	30	30	29	29	28	28	27	27	26
Total electricity consumption	2231	2396	2547	2691	2832	2969	3104	3238	3369	3500	3629	3758	3885	4012	4138	4264

			Table	e 106: Ajr	ner - Fore	ecast of e	electricity	consum	otion usir	ng econo	metric me	ethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	574	617	662	708	754	801	849	896	944	992	1038	1084	1120	1149	1173	1193
Non-Domestic	187	206	226	248	271	287	303	320	338	356	376	395	416	437	458	492
Public Street Light	12	13	14	15	15	16	17	18	18	19	19	20	20	21	21	21
Agriculture (M + N + P))	199	225	253	283	316	352	391	433	478	526	579	635	695	760	829	903
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	322	338	354	371	387	404	422	439	458	476	495	514	534	554	573	594
Industry (L)	540	571	605	640	676	715	755	798	843	889	938	990	1045	1102	1161	1225
PWW (S + M + L)	129	141	154	169	185	203	224	247	272	300	332	367	406	450	498	552
Mixed Load	34	33	33	32	32	31	31	30	29	29	28	28	27	27	26	26
Total electricity consumption	1995	2144	2301	2465	2636	2809	2991	3181	3380	3587	3805	4033	4263	4498	4741	5005

13.1.10. Bhilwara

			Та	ble 107: I	3hilwara ·	 Forecas 	t of elect	ricity con	sumptior	n using tr	end meth	od				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	364	391	419	447	474	502	528	551	570	584	597	603	594	574	543	501
Non-Domestic	120	136	154	174	197	206	216	226	237	248	259	270	282	293	305	317
Public Street Light	16	18	20	22	25	25	26	26	27	27	26	26	25	23	22	19
Agriculture (M + N + P))	338	373	410	452	497	536	578	623	670	721	779	841	907	978	1052	1132
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	153	163	175	187	200	210	222	233	246	259	272	287	301	317	333	351
Industry (L)	618	641	665	690	715	741	768	796	825	855	908	965	1025	1089	1157	1228
PWW (S + M + L)	29	29	30	31	31	31	32	32	32	32	32	32	31	31	30	30
Mixed Load	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Total electricity consumption	1642	1756	1877	2006	2143	2257	2374	2492	2611	2729	2878	3027	3170	3310	3447	3581

			Т	able 108:	Bhilwara	- Foreca	st of elec	tricity co	nsumptic	on using l	-IW metho	bd				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	403	426	449	472	496	519	542	565	588	612	635	658	681	704	728	751
Non-Domestic	138	141	145	151	157	163	170	177	185	192	200	208	215	223	231	239
Public Street Light	13	14	15	16	18	19	20	21	22	24	25	26	27	28	30	31
Agriculture (M + N + P))	560	607	653	700	746	792	839	885	932	978	1025	1071	1117	1164	1210	1257
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	150	157	165	172	179	187	194	201	208	216	223	230	238	245	252	260
Industry (L)	627	630	633	636	639	642	645	648	651	655	658	661	664	667	670	673
PWW (S + M + L)	35	36	38	40	41	43	45	47	48	50	52	53	55	57	59	60
Mixed Load	6	8	9	9	10	11	12	12	13	14	15	15	16	17	17	18
Total electricity consumption	1932	2019	2107	2197	2286	2377	2467	2558	2649	2740	2831	2922	3014	3105	3197	3289

			Table	109: Bhil	wara - Fo	recast of	electricit	y consun	nption us	ing econ	ometric n	nethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	364	395	426	458	490	524	557	591	625	659	691	724	750	771	789	804
Non-Domestic	97	107	117	128	140	148	157	166	175	185	195	205	216	227	238	255
Public Street Light	16	18	21	24	27	31	35	40	46	51	58	65	73	81	90	99
Agriculture (M + N + P))	326	358	393	431	473	518	567	619	677	739	807	881	962	1049	1145	1250
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	150	157	165	171	178	183	189	193	197	200	202	204	205	204	203	200
Industry (L)	624	627	630	633	635	638	641	644	648	650	653	656	659	662	664	668
PWW (S + M + L)	34	36	38	39	41	42	44	46	47	49	50	52	53	55	56	58
Mixed Load	6	8	9	9	10	11	12	12	13	14	14	15	16	16	17	18
Total electricity consumption	1617	1706	1799	1895	1994	2096	2202	2312	2427	2546	2672	2802	2933	3066	3203	3352

13.1.11. Nagaur

						Forecast			-							
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	329	358	388	418	449	480	510	538	562	582	601	613	611	596	570	531
Non-Domestic	101	118	137	159	184	199	214	230	247	265	285	305	327	350	374	399
Public Street Light	12	13	15	17	19	20	22	23	23	24	25	25	25	24	23	21
Agriculture (M + N + P))	966	1033	1104	1178	1257	1340	1427	1519	1615	1715	1821	1930	2045	2164	2287	2414
Agriculture (F)	236	215	195	177	160	145	131	119	107	97	87	79	71	64	57	51
Industry (Small + Med)	128	134	140	146	153	158	165	171	177	184	191	198	206	213	221	229
Industry (L)	125	131	136	143	149	157	165	174	183	193	205	218	232	246	261	277
PWW (S + M + L)	77	82	87	92	97	99	100	101	102	103	103	103	103	103	102	101
Mixed Load	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7
Total electricity consumption	1981	2089	2207	2336	2474	2604	2740	2880	3024	3170	3325	3479	3625	3766	3901	4030

							t of elect									
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	396	463	517	565	611	654	696	736	775	814	851	889	925	961	997	1032
Non-Domestic	109	117	124	132	139	147	154	162	169	176	184	191	199	206	214	221
Public Street Light	16	18	20	21	23	24	25	26	27	29	30	31	32	32	33	34
Agriculture (M + N + P))	1406	1528	1650	1772	1894	2016	2138	2260	2381	2503	2625	2747	2869	2991	3113	3235
Agriculture (F)	251	196	149	111	78	66	74	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	130	136	142	148	155	161	167	173	179	185	191	197	203	209	215	222
Industry (L)	136	153	169	185	202	218	234	251	267	283	299	316	332	348	365	381
PWW (S + M + L)	93	103	111	118	124	130	136	141	146	151	156	160	165	169	173	177
Mixed Load	6	7	8	9	10	10	11	12	13	14	15	15	16	17	18	19
Total electricity consumption	2544	2721	2891	3062	3235	3426	3634	3760	3958	4155	4351	4546	4741	4935	5128	5321

			Table	112: Nag	jaur - For	ecast of	electricity	/ consum	ption usi	ng econo	metric m	ethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	426	467	510	557	606	654	704	758	813	871	930	992	1048	1099	1148	1204
Non-Domestic	102	116	132	148	167	183	200	218	237	257	279	302	326	351	378	413
Public Street Light	11	12	13	14	15	17	18	19	20	22	23	24	26	27	28	29
Agriculture (M + N + P))	951	1014	1077	1138	1199	1257	1313	1362	1406	1442	1470	1485	1486	1470	1434	1373
Agriculture (F)	180	142	110	83	59	50	57	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	133	140	147	154	162	169	177	184	192	200	208	217	225	234	243	252
Industry (L)	136	153	173	195	220	249	282	320	362	411	467	530	602	685	778	884
PWW (S + M + L)	92	102	110	116	122	128	133	138	143	147	152	156	160	163	167	170
Mixed Load	6	7	8	9	9	10	11	12	13	14	14	15	16	17	18	18
Total electricity consumption	2038	2153	2279	2415	2560	2717	2895	3011	3187	3364	3543	3720	3888	4046	4193	4344

13.1.12. Udaipur

			16	ble 113:	udaipur -	Forecas	t of electr	icity con	sumption	using tre	end meth	oa				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	513	555	597	641	684	727	767	803	835	858	881	893	884	857	813	753
Non-Domestic	251	278	309	342	379	406	434	464	496	529	565	601	640	681	723	767
Public Street Light	14	14	15	16	16	16	16	16	15	15	14	13	12	11	10	9
Agriculture (M + N + P))	205	229	255	283	315	339	365	393	422	453	487	522	558	597	638	681
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	104	106	107	109	111	113	116	118	121	123	126	129	132	134	137	140
Industry (L)	382	399	417	435	454	479	504	531	560	589	627	666	707	751	798	847
PWW (S + M + L)	47	49	51	53	55	57	58	60	61	62	63	64	65	66	66	66
Mixed Load	25	26	26	27	27	28	28	29	29	30	30	31	31	31	32	32
Total electricity consumption	1541	1655	1777	1906	2041	2164	2289	2414	2539	2661	2793	2918	3029	3128	3217	3294

			т	able 114:	Udaipur	- Forecas	st of elect	tricity cor	nsumptio	n using H	IW metho	d				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	591	639	686	734	782	830	878	926	974	1022	1070	1117	1165	1213	1261	1309
Non-Domestic	304	322	339	356	373	390	408	425	442	459	477	494	511	528	546	563
Public Street Light	18	19	20	21	22	23	25	26	27	28	30	31	32	33	35	36
Agriculture (M + N + P))	300	316	332	349	365	382	398	414	431	447	524	540	556	573	589	606
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	106	108	110	112	114	116	119	121	123	125	127	129	132	134	136	138
Industry (L)	386	443	501	558	616	673	731	789	846	904	997	1055	1112	1170	1228	1285
PWW (S + M + L)	48	51	54	57	61	64	67	70	73	77	80	83	86	90	93	96
Mixed Load	26	29	33	36	40	43	47	50	54	57	60	64	67	71	74	78
Total electricity consumption	1777	1926	2075	2224	2373	2522	2671	2820	2970	3119	3364	3513	3663	3812	3961	4110

			Table	115: Uda	ipur - Fo	recast of	electricit	y consum	nption usi	ing econo	ometric m	ethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	492	532	573	615	658	701	745	789	833	877	920	962	996	1023	1046	1066
Non-Domestic	239	264	291	319	350	377	405	435	466	499	533	569	606	646	687	737
Public Street Light	14	16	17	18	20	21	22	22	23	24	25	26	27	27	28	30
Agriculture (M + N + P))	204	223	233	252	281	318	329	342	352	371	392	415	438	463	489	517
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	106	108	111	113	116	119	122	125	129	132	136	140	144	148	152	157
Industry (L)	384	441	498	556	612	669	727	784	841	897	990	1047	1105	1162	1218	1275
PWW (S + M + L)	47	50	53	57	60	63	66	69	72	75	78	81	84	86	89	92
Mixed Load	25	29	32	36	39	42	46	49	53	56	60	63	66	70	73	76
Total electricity consumption	1511	1663	1809	1966	2136	2310	2462	2616	2769	2931	3134	3302	3465	3625	3782	3949

13.1.13. Rajsamand

(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	162	173	185	197	209	221	233	243	251	257	263	265	261	252	238	220
Non-Domestic	49	53	57	61	66	71	76	81	86	92	98	104	111	118	125	132
Public Street Light	6	7	8	9	10	11	12	13	14	15	15	15	14	14	13	12
Agriculture (M + N + P))	81	86	92	98	104	111	118	125	133	141	152	164	176	190	204	218
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	256	276	296	318	342	359	376	395	414	434	455	476	499	523	548	574
Industry (L)	267	279	290	302	315	324	333	343	353	363	386	410	436	463	491	522
PWW (S + M + L)	14	15	16	16	17	18	18	18	18	19	19	19	19	19	19	19
Mixed Load	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3
Total electricity consumption	837	890	946	1004	1065	1116	1167	1220	1271	1323	1390	1456	1520	1581	1641	1699

			Ta	ble 117: F	Rajsaman	d - Forec	ast of ele	ctricity c	onsumpti	ion using	HW meth	nod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	178	186	194	202	211	219	227	235	244	252	260	268	276	285	293	301
Non-Domestic	62	65	69	72	76	80	83	87	90	94	97	101	105	108	112	115
Public Street Light	6	8	9	10	11	12	13	14	16	17	18	19	20	21	23	24
Agriculture (M + N + P))	117	133	148	164	179	195	210	225	241	256	272	287	302	318	333	349
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	260	279	298	317	336	355	374	393	412	432	451	470	489	508	527	546
Industry (L)	258	258	258	258	258	258	258	258	258	258	258	258	258	258	258	258
PWW (S + M + L)	13	14	14	15	16	16	17	18	18	19	20	20	21	22	22	23
Mixed Load	3	3	4	4	4	5	5	6	6	7	7	8	8	9	9	10
Total electricity consumption	897	945	994	1043	1091	1140	1188	1237	1286	1334	1383	1431	1480	1529	1577	1626

			Table 1	18: Rajsa	mand - F	orecast c	of electric	ity consu	Imption u	sing eco	nometric	method				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	158	171	184	198	211	226	240	255	270	286	301	316	329	339	349	357
Non-Domestic	47	52	58	64	71	77	84	91	98	106	114	122	132	141	151	164
Public Street Light	7	7	8	9	10	11	12	13	15	16	17	17	18	18	19	20
Agriculture (M + N + P))	78	84	91	98	106	117	129	142	155	170	186	203	222	241	263	282
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	261	284	308	332	357	383	411	439	468	498	529	561	594	629	664	701
Industry (L)	257	257	257	257	257	257	257	257	257	256	256	256	256	256	256	256
PWW (S + M + L)	13	14	14	15	15	16	17	17	18	18	19	20	20	21	21	22
Mixed Load	3	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10
Total electricity consumption	822	872	923	977	1032	1092	1155	1219	1287	1356	1429	1504	1579	1655	1733	1812

13.1.14. Chittorgarh and Pratapgarh

		Та	ble 119: (Chitorgar	h and Pra	tapgarh ·	- Forecas	t of elect	ricity con	sumption	n using tr	end meth	od			
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	293	316	339	362	385	410	434	456	475	489	504	511	508	493	469	435
Non-Domestic	73	80	88	97	107	114	121	129	137	146	155	164	174	184	194	205
Public Street Light	9	10	11	12	13	13	14	15	15	15	16	16	15	15	14	13
Agriculture (M + N + P))	853	918	988	1063	1142	1226	1315	1409	1509	1615	1726	1843	1966	2095	2231	2372
Agriculture (F)	16	10	7	4	3	2	1	1	0	0	0	0	0	0	0	0
Industry (Small + Med)	45	46	47	48	49	51	53	55	57	58	60	62	64	67	69	71
Industry (L)	205	214	223	233	243	256	270	285	300	316	336	357	379	402	427	454
PWW (S + M + L)	34	35	36	37	38	38	38	38	38	38	38	38	37	37	36	36
Mixed Load	21	21	22	22	23	23	23	23	23	23	23	23	23	23	22	22
Total electricity consumption	1549	1651	1761	1879	2003	2134	2270	2410	2554	2701	2857	3014	3166	3315	3462	3607

		т.	able 120:	Chitorga	rh and Pr	atapgarh	- Foreca	st of elec	tricity co	nsumptio	on using H	-IW metho	d			
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	345	384	417	447	476	504	531	558	584	609	635	660	684	709	733	757
Non-Domestic	87	94	101	109	116	123	131	138	145	153	160	167	175	182	189	197
Public Street Light	11	12	13	14	15	16	16	17	18	19	20	20	21	22	23	24
Agriculture (M + N + P))	1134	1231	1329	1427	1525	1622	1720	1818	1916	2013	2111	2209	2307	2404	2502	2600
Agriculture (F)	18	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	46	46	46	46	46	46	46	46	46	45	45	45	45	45	45	45
Industry (L)	408	434	450	460	466	471	473	474	474	473	471	469	466	464	461	457
PWW (S + M + L)	35	36	38	39	41	42	44	45	47	48	50	51	53	54	56	57
Mixed Load	21	22	23	25	26	27	28	30	31	32	34	35	36	37	39	40
Total electricity consumption	2105	2260	2417	2566	2710	2851	2989	3125	3259	3392	3525	3656	3787	3917	4047	4177

(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
(1103)		1110	1115	1120	1121	1122	1120	1124	1120	1120	1121	1120	1125	11.00	1101	
Domestic	290	317	344	372	401	431	461	492	523	555	586	617	643	666	685	703
Non-Domestic	62	69	76	83	91	99	108	117	126	136	146	157	169	181	194	208
Public Street Light	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture (M + N + P))	871	966	1065	1168	1275	1385	1501	1620	1742	1870	2004	2140	2281	2427	2578	2734
Agriculture (F)	13	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	44	46	48	51	53	55	57	59	61	63	65	67	68	70	71	71
Industry (L)	406	432	447	458	464	468	470	471	471	469	468	466	463	460	457	454
PWW (S + M + L)	36	39	42	46	50	54	59	65	71	78	86	94	104	114	126	139
Mixed Load	21	22	23	24	26	27	28	29	31	32	33	34	35	37	38	39
Total electricity consumption	1755	1891	2046	2201	2359	2519	2684	2852	3025	3202	3387	3575	3764	3955	4149	4349

13.1.15. Banswara and Dungarour

		Та	able 122:	Banswar	a and Dur	ngarpur -	Forecast	of electr	icity cons	sumption	using tre	end metho	bd			
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	343	376	411	447	485	524	564	602	637	667	698	720	726	717	694	654
Non-Domestic	62	68	75	83	92	97	103	109	115	122	128	135	143	150	158	166
Public Street Light	5	5	5	6	6	7	7	7	7	7	7	7	7	6	6	5
Agriculture (M + N + P))	179	196	214	234	256	279	304	331	360	391	420	451	484	519	555	594
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	33	34	35	36	36	37	38	39	40	41	41	42	43	43	44	45
Industry (L)	72	75	78	82	85	90	95	100	105	110	117	125	132	141	149	159
PWW (S + M + L)	14	15	15	16	16	17	17	17	18	18	18	19	19	19	19	19
Mixed Load	5	5	6	6	6	5	4	3	2	2	1	1	1	1	0	0
Total electricity consumption	712	774	840	909	982	1055	1131	1207	1283	1358	1432	1500	1554	1596	1626	1642

		Т	able 123:	: Banswa	ra and Dເ	ungarpur	- Forecas	st of elect	ricity con	sumptio	n using H	W metho	d			
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	371	395	418	442	466	490	514	538	562	586	609	633	657	681	705	729
Non-Domestic	79	84	89	94	98	103	108	113	118	123	128	133	138	143	148	153
Public Street Light	5	6	6	7	7	8	9	9	10	10	11	12	12	13	13	14
Agriculture (M + N + P))	247	265	283	300	318	336	354	372	390	408	425	443	461	479	497	515
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	33	34	35	36	37	38	39	40	41	42	43	44	44	45	46	47
Industry (L)	95	115	136	156	177	198	218	239	260	280	301	321	342	363	383	404
PWW (S + M + L)	15	16	16	16	17	17	18	18	19	19	19	20	20	21	21	22
Mixed Load	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Total electricity consumption	850	921	991	1061	1131	1202	1272	1342	1412	1483	1553	1623	1693	1764	1834	1904

		Table	124: Ban	iswara ar	nd Dunga	rpur - For	ecast of	electricity	/ consum	ption usi	ng econo	metric m	ethod			
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	322	345	369	393	417	440	464	487	510	532	552	572	587	597	605	610
Non-Domestic	63	70	78	86	94	101	109	117	125	133	142	152	162	172	183	197
Public Street Light	5	5	5	6	6	7	7	8	8	8	9	9	9	10	10	11
Agriculture (M + N + P))	170	188	207	227	249	272	297	323	351	381	412	446	481	519	559	602
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	33	34	35	36	37	38	39	40	40	41	42	43	44	45	46	47
Industry (L)	94	115	135	156	176	197	217	238	258	278	299	319	340	360	380	401
PWW (S + M + L)	15	15	16	16	17	17	17	18	18	19	19	19	20	20	20	21
Mixed Load	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Total electricity consumption	708	780	854	929	1006	1083	1162	1242	1324	1407	1492	1578	1661	1742	1823	1908

13.1.16. Jhunjhunu

			Tab	le 125: Jl	hunjhunu	- Foreca	st of elec	tricity co	nsumptio	n using t	rend met	hod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	347	376	406	436	467	496	524	550	572	589	605	614	608	590	561	520
Non-Domestic	108	121	135	151	169	188	208	230	255	282	306	332	360	391	423	457
Public Street Light	8	9	10	12	13	14	15	16	17	17	18	18	17	17	16	15
Agriculture (M + N + P))	468	512	559	610	665	710	758	808	861	916	924	930	937	942	946	949
Agriculture (F)	391	373	355	338	321	305	290	275	261	247	234	221	209	197	185	174
Industry (Small + Med)	35	38	41	44	48	51	55	60	64	69	73	78	82	87	92	97
Industry (L)	61	65	68	72	76	81	87	92	99	105	113	122	131	142	153	165
PWW (S + M + L)	85	92	99	107	115	123	130	138	146	154	156	157	158	159	159	159
Mixed Load	8	9	9	10	10	11	12	13	14	15	16	17	18	19	20	21
Total electricity consumption	1513	1594	1684	1781	1885	1980	2079	2182	2287	2393	2444	2488	2521	2542	2554	2556

			Та	ble 126: 、	Jhunjhun	u - Foreca	ast of ele	ctricity co	onsumpti	on using	HW meth	od				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	383	460	471	494	529	574	627	686	752	823	898	978	1062	1151	1243	1338
Non-Domestic	127	129	138	147	156	165	174	182	191	200	209	218	227	235	244	253
Public Street Light	8	9	11	13	14	16	17	19	21	22	24	25	27	29	30	32
Agriculture (M + N + P))	589	644	669	694	720	745	770	795	820	845	870	895	920	945	970	995
Agriculture (F)	608	550	548	546	544	542	541	539	538	536	535	533	532	531	530	529
Industry (Small + Med)	32	34	35	37	38	39	41	42	43	45	46	47	49	50	51	53
Industry (L)	62	95	109	117	124	129	133	136	138	141	142	144	145	146	146	147
PWW (S + M + L)	80	84	89	93	98	103	108	112	117	122	127	131	136	141	146	150
Mixed Load	8	11	13	14	15	16	18	19	20	22	23	24	26	27	28	29
Total electricity consumption	1896	2018	2083	2156	2238	2329	2427	2531	2640	2755	2873	2996	3123	3254	3388	3526

			Table 1	27: Jhun	jhunu - Fo	orecast o	f electric	ity consu	mption u	sing eco	nometric	method				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	343	373	406	440	476	515	555	596	640	685	731	778	821	860	896	932
Non-Domestic	118	137	157	180	205	229	255	284	315	349	375	402	432	463	496	551
Public Street Light	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture (M + N + P))	387	426	468	513	560	572	583	589	593	593	590	581	566	545	518	549
Agriculture (F)	436	400	404	407	411	415	419	422	426	430	434	438	441	445	449	453
Industry (Small + Med)	38	40	43	46	49	52	55	59	63	67	71	76	81	86	92	98
Industry (L)	61	94	108	117	123	128	132	135	138	140	141	143	144	145	145	145
PWW (S + M + L)	78	83	87	92	96	101	106	111	115	120	125	130	135	140	145	151
Mixed Load	8	11	12	14	15	16	18	19	20	21	23	24	25	26	28	29
Total electricity consumption	1476	1565	1686	1808	1935	2028	2122	2216	2310	2404	2490	2571	2645	2711	2769	2907

13.1.17. Sikar

								-			nd metho					
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	432	465	497	531	563	600	636	668	696	718	740	752	747	727	692	643
Non-Domestic	131	145	160	177	196	216	239	263	289	318	343	370	398	429	461	495
Public Street Light	8	8	9	10	10	10	11	11	11	11	11	10	10	9	8	7
Agriculture (M + N + P))	839	913	992	1077	1169	1263	1363	1471	1585	1707	1845	1992	2149	2316	2493	2681
Agriculture (F)	273	218	174	139	111	88	70	56	44	35	28	22	18	14	11	9
Industry (Small + Med)	69	72	76	79	83	87	91	95	100	104	109	114	119	125	130	136
Industry (L)	165	177	190	204	218	234	251	270	289	310	329	350	372	395	419	445
PWW (S + M + L)	81	86	91	96	101	106	112	117	123	128	134	139	144	149	153	157
Mixed Load	5	5	5	5	6	6	6	7	7	7	8	8	8	9	9	10
Total electricity consumption	2002	2088	2194	2318	2457	2612	2779	2957	3144	3338	3546	3757	3965	4171	4377	4582

			Tabl	e 129: Ta	ble 92: Si	kar - Fore	ecast of e	lectricity	consump	otion usir	ng HW me	thod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	465	506	543	580	618	655	692	729	766	803	840	878	915	952	989	1026
Non-Domestic	153	160	169	178	187	196	206	215	224	233	242	251	260	269	278	287
Public Street Light	7	10	13	16	19	22	25	28	31	34	38	41	44	47	50	53
Agriculture (M + N + P))	1102	1368	1506	1643	1780	1918	2055	2192	2330	2467	2604	2742	2879	3016	3154	3291
Agriculture (F)	456	285	98	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	67	70	74	78	82	86	90	93	97	101	105	109	113	116	120	124
Industry (L)	151	128	171	203	231	256	279	300	321	341	360	378	396	414	432	449
PWW (S + M + L)	77	82	87	93	98	104	109	115	120	126	131	137	142	148	153	158
Mixed Load	5	6	6	6	6	6	7	7	7	7	8	8	8	8	8	9
Total electricity consumption	2482	2616	2667	2798	3022	3243	3462	3679	3896	4112	4327	4542	4757	4970	5184	5397

			Tabl	e 130: Sil	kar - Fore	cast of e	lectricity	<u>consu</u> mp	tion usin	g econor	netric me	thod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	418	453	492	531	573	617	663	711	761	813	865	918	966	1009	1050	1088
Non-Domestic	147	166	188	210	235	261	289	319	352	387	417	447	480	515	552	605
Public Street Light	8	9	10	11	12	13	15	17	19	21	23	25	28	31	33	36
Agriculture (M + N + P))	768	818	873	929	990	1054	1123	1195	1271	1352	1439	1530	1627	1729	1837	1952
Agriculture (F)	327	207	72	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	70	75	80	85	91	97	103	110	117	124	132	141	149	159	168	178
Industry (L)	150	128	170	202	230	254	277	298	319	338	357	376	394	411	428	445
PWW (S + M + L)	82	88	96	104	112	121	131	143	154	167	182	197	214	232	253	275
Mixed Load	5	6	6	6	6	6	7	7	7	7	7	8	8	8	8	8
Total electricity consumption	1974	1951	1985	2079	2249	2425	2609	2800	3000	3209	3422	3642	3866	4094	4330	4589

13.1.18. Jodhpur City circle

				Table 131	: JCC - F	orecast o	of electric	ity consu	mption u	sing tren	d method	1				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	443	466	488	510	530	555	578	598	612	622	629	629	614	587	550	502
Non-Domestic	250	270	291	313	336	367	400	435	474	515	562	613	668	728	792	860
Public Street Light	90	90	91	91	91	105	122	140	160	181	197	212	224	232	235	230
Agriculture (M + N + P))	13	15	17	19	22	24	26	28	30	33	35	38	40	43	46	49
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	144	146	148	150	152	158	165	171	178	185	187	189	192	194	197	199
Industry (L)	286	296	306	316	326	340	354	368	383	399	412	425	438	452	466	480
PWW (S + M + L)	36	37	38	38	39	39	39	39	39	39	38	37	36	35	34	32
Mixed Load	96	98	100	101	103	105	106	108	109	111	112	113	114	115	116	117
Total electricity consumption	1359	1418	1478	1538	1599	1693	1789	1887	1986	2083	2172	2256	2327	2386	2434	2470

				Table 13	2: JCC -	Forecast	of electri	city cons	umption	using HW	/ method					
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	583	613	643	672	702	732	762	792	821	851	881	911	941	971	1000	1030
Non-Domestic	307	327	346	365	384	403	422	441	460	479	498	517	536	556	575	594
Public Street Light	78	86	93	101	108	116	123	131	138	146	154	161	169	176	184	191
Agriculture (M + N + P))	16	16	16	16	17	17	17	18	18	18	18	19	19	19	20	20
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	157	164	170	177	184	191	198	205	212	219	225	232	239	246	253	260
Industry (L)	303	303	303	303	303	303	303	303	303	303	303	303	303	303	303	303
PWW (S + M + L)	36	37	38	39	40	40	41	42	43	44	45	45	46	47	48	49
Mixed Load	98	105	111	117	124	130	136	143	149	156	162	168	175	181	187	194
Total electricity consumption	1578	1649	1720	1791	1861	1932	2003	2074	2144	2215	2286	2357	2428	2498	2569	2640

			Tab	<u>le 133:</u> J0	CC - Fore	cast of el	ectricity (consump	tion using	g econon	netric met	hod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	487	518	551	586	622	660	699	740	782	825	869	914	952	986	1017	1046
Non-Domestic	259	286	316	346	379	417	458	501	546	594	631	669	709	750	793	849
Public Street Light	77	85	92	99	106	113	120	126	132	138	144	149	154	157	160	162
Agriculture (M + N + P))	12	14	15	16	18	19	21	23	25	27	29	32	34	38	41	46
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	156	163	170	176	183	190	197	204	210	217	224	231	238	244	251	258
Industry (L)	301	301	301	301	301	301	301	301	301	301	301	301	301	301	300	300
PWW (S + M + L)	36	37	37	38	39	40	40	41	42	43	43	44	45	45	46	47
Mixed Load	97	104	110	116	122	128	135	141	147	153	159	165	171	178	184	190
Total electricity consumption	1426	1507	1592	1680	1770	1868	1970	2076	2185	2298	2400	2504	2603	2699	2792	2896

13.1.19. Jodhpur district circle

			I abl	e 134: JO	dhpur DC	- Foreca	ist of elec	tricity co	nsumptio	on using t	rend met	noa				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	240	269	300	334	370	393	416	437	455	469	482	489	486	472	449	410
Non-Domestic	73	79	86	93	101	110	121	132	145	158	174	191	210	231	253	274
Public Street Light	3	3	4	4	4	5	5	5	5	4	4	4	4	4	3	3
Agriculture (M + N + P))	2181	2426	2697	2996	3325	3561	3810	4072	4350	4641	4841	5045	5252	5462	5674	6053
Agriculture (F)	467	408	357	312	273	250	228	209	191	174	159	145	132	120	109	0
Industry (Small + Med)	94	103	113	124	136	142	149	155	162	170	177	185	193	201	210	213
Industry (L)	69	74	79	84	89	92	95	98	102	105	108	112	115	119	122	126
PWW (S + M + L)	253	266	279	292	306	311	316	320	324	327	329	330	331	330	328	315
Mixed Load	22	23	24	25	26	26	26	25	25	25	25	25	25	24	24	24
Total electricity consumption	3401	3651	3938	4264	4630	4890	5165	5454	5757	6073	6300	6526	6747	6963	7173	7419

					odhpur D											
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	256	284	312	341	369	397	425	454	482	510	538	566	595	623	651	679
Non-Domestic	90	100	110	120	130	140	150	160	170	180	190	200	210	219	229	239
Public Street Light	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6
Agriculture (M + N + P))	3101	3376	3650	3925	4200	4475	4749	5024	5299	5573	5848	6123	6398	6672	6947	7222
Agriculture (F)	510	420	373	345	329	320	317	320	325	334	346	360	376	394	413	434
Industry (Small + Med)	93	100	107	113	120	127	133	140	147	153	160	167	173	180	187	193
Industry (L)	64	64	64	64	64	63	63	63	63	63	62	62	62	62	62	62
PWW (S + M + L)	264	282	301	319	338	357	375	394	412	431	449	468	486	505	523	542
Mixed Load	22	27	31	35	40	44	49	53	58	62	66	71	75	80	84	88
Total electricity consumption	4404	4657	4952	5266	5592	5926	6266	6611	6959	7310	7665	8021	8379	8740	9101	9465

			Table 1	36: Jodhp	our DC - F	orecast o	of electric	ity consu	umption ι	using eco	nometric	method				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	165	185	206	228	252	278	305	334	364	396	430	464	497	528	558	587
Non-Domestic	67	74	81	88	96	105	114	123	134	145	156	169	182	196	211	226
Public Street Light	3	3	3	3	4	4	4	4	4	4	4	5	5	5	5	5
Agriculture (M + N + P))	2281	2527	2787	3053	3334	3621	3923	4233	4554	4886	5235	5591	5960	6341	6735	7142
Agriculture (F)	366	305	275	257	248	245	246	250	258	268	281	295	312	330	350	371
Industry (Small + Med)	98	108	119	131	144	157	172	188	204	222	242	263	285	309	335	363
Industry (L)	64	64	64	63	63	63	63	63	62	62	62	62	62	61	61	61
PWW (S + M + L)	261	279	297	315	333	351	368	386	403	420	437	454	471	487	503	519
Mixed Load	22	26	31	35	39	44	48	52	57	61	65	70	74	78	82	87
Total electricity consumption	3328	3572	3863	4176	4513	4867	5243	5633	6041	6465	6913	7372	7846	8335	8840	9361

13.1.20. Jalore

			Та	able 137:	Jalore - F	orecast	of electric	ity consi	umption u	using trer	nd metho	b				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	134	144	154	165	175	187	200	211	221	229	237	243	243	237	227	212
Non-Domestic	55	62	70	79	88	97	106	116	127	139	154	172	191	212	235	260
Public Street Light	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2	2
Agriculture (M + N + P))	841	925	1017	1117	1226	1334	1451	1576	1710	1855	2009	2175	2351	2540	2740	2953
Agriculture (F)	352	340	328	316	304	301	298	295	291	288	284	280	275	271	266	261
Industry (Small + Med)	179	191	203	216	230	245	260	277	295	313	333	354	376	400	425	451
Industry (L)	29	32	35	39	43	45	48	50	53	56	59	62	65	69	72	76
PWW (S + M + L)	55	59	62	66	69	70	70	70	70	69	69	68	67	66	65	64
Mixed Load	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Total electricity consumption	1651	1758	1875	2002	2141	2285	2438	2601	2773	2955	3152	3359	3575	3800	4035	4282

				Table 138	: Jalore -	Forecas	t of electi	ricity con	sumption	using H	W method	ł				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	184	214	237	257	275	293	309	325	341	356	371	387	402	417	433	448
Non-Domestic	60	65	70	74	79	84	88	93	98	102	107	112	116	121	126	130
Public Street Light	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Agriculture (M + N + P))	1196	1303	1411	1519	1626	1734	1841	1949	2057	2164	2272	2379	2487	2594	2702	2810
Agriculture (F)	329	313	303	299	298	300	303	309	316	324	333	342	353	365	377	389
Industry (Small + Med)	185	200	216	231	246	261	276	291	306	321	337	352	367	382	397	412
Industry (L)	37	38	38	39	40	41	42	43	44	44	45	46	47	48	49	50
PWW (S + M + L)	59	64	70	75	81	86	92	97	103	108	114	119	125	130	136	141
Mixed Load	3	4	4	5	5	6	7	7	8	8	9	9	10	11	11	12
Total electricity consumption	2056	2204	2352	2502	2654	2807	2961	3117	3274	3431	3590	3750	3910	4071	4233	4396

			Table	e 139: Jal	ore - Fore	ecast of e	electricity	consum	otion usir	ng econo	metric me	ethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	130	140	151	163	175	187	200	214	228	242	257	272	286	298	309	319
Non-Domestic	56	64	73	82	93	102	111	121	131	142	154	166	180	194	209	230
Public Street Light	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Agriculture (M + N + P))	811	880	954	1033	1117	1195	1279	1367	1459	1557	1662	1772	1887	2010	2139	2296
Agriculture (F)	236	227	224	223	225	229	235	242	250	259	270	281	293	306	319	333
Industry (Small + Med)	176	190	205	221	237	254	272	291	311	331	353	377	401	426	453	481
Industry (L)	36	37	38	39	40	41	42	42	43	44	45	46	47	48	48	49
PWW (S + M + L)	58	63	69	74	79	85	90	95	100	106	111	116	121	126	130	135
Mixed Load	3	4	4	5	5	6	7	7	8	8	9	9	10	10	11	12
Total electricity consumption	1510	1609	1721	1842	1975	2102	2238	2382	2533	2693	2864	3042	3227	3420	3621	3858

13.1.21. Pali and Sirohi

(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	462	502	543	586	628	659	688	712	731	743	763	773	767	744	706	660
Non-Domestic	158	174	192	211	232	251	271	292	314	338	371	406	444	486	530	587
Public Street Light	13	13	14	14	14	14	13	13	12	11	10	10	9	8	7	6
Agriculture (M + N + P))	490	538	591	649	711	779	853	933	1020	1114	1215	1325	1442	1569	1704	1836
Agriculture (F)	39	36	34	31	29	27	25	23	21	20	18	17	15	14	13	13
Industry (Small + Med)	139	145	150	155	161	166	172	178	185	191	198	204	211	219	226	240
Industry (L)	380	413	448	487	528	541	554	567	581	594	608	622	636	650	664	699
PWW (S + M + L)	50	52	53	55	57	56	56	55	54	53	52	51	49	48	46	45
Mixed Load	12	12	12	12	12	11	11	11	11	11	11	11	11	11	11	11
otal electricity consumption	1742	1884	2036	2199	2373	2506	2643	2785	2929	3075	3246	3418	3585	3747	3907	4096

			Tabl	e 141: Pa	li and Sir	ohi - Fore	ecast of e	lectricity	consump	otion usir	ng HW me	thod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	519	557	595	633	671	709	747	785	823	861	899	937	975	1013	1051	1089
Non-Domestic	196	213	230	247	264	281	298	314	331	348	365	382	399	416	433	450
Public Street Light	15	15	16	17	18	19	19	20	21	22	23	24	24	25	26	27
Agriculture (M + N + P))	621	719	816	914	1012	1110	1208	1306	1404	1502	1599	1697	1795	1893	1991	2089
Agriculture (F)	56	54	52	50	48	46	44	42	40	38	36	34	32	30	28	26
Industry (Small + Med)	140	144	148	151	155	159	163	167	171	175	179	182	186	190	194	198
Industry (L)	527	562	576	581	580	575	567	556	543	528	512	495	476	457	436	415
PWW (S + M + L)	50	52	54	56	58	59	61	63	65	67	69	70	72	74	76	78
Mixed Load	14	15	17	18	20	22	23	25	26	28	29	31	32	34	35	37
Total electricity consumption	2137	2331	2504	2668	2826	2980	3130	3278	3424	3568	3711	3852	3993	4132	4271	4409

			Table 142	2. Fall all	u 3110111 -	TUIEcasi	UI EIECII	icity cons	sumption	using ec	onometri	c methou				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	455	490	527	564	601	640	678	717	756	795	832	869	899	923	943	959
Non-Domestic	159	182	208	235	265	284	305	326	348	371	395	421	447	475	504	553
Public Street Light	13	14	15	16	16	17	18	18	19	20	20	21	21	22	22	22
Agriculture (M + N + P))	476	513	552	594	639	686	737	791	848	908	974	1043	1116	1193	1275	1363
Agriculture (F)	40	39	38	37	36	35	34	33	32	31	29	28	27	25	24	22
Industry (Small + Med)	139	143	147	151	154	158	162	166	170	173	177	181	185	189	193	196
Industry (L)	524	559	573	578	577	572	563	552	540	524	508	491	473	454	433	412
PWW (S + M + L)	50	52	53	55	57	59	60	62	64	65	67	68	70	71	73	74
Mixed Load	14	15	17	18	20	21	23	24	26	27	29	30	32	33	35	36
Total electricity consumption	1871	2008	2131	2249	2366	2472	2580	2690	2801	2915	3033	3152	3269	3385	3501	3639

13.1.22. Barmer and Jaisalmer

		1	Table 143	: Barmer	and Jaisa	almer - Fo	orecast o	i electrici	ty consu	mption us	sing trend	d method				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	271	305	341	381	422	449	475	499	519	535	551	559	555	539	513	479
Non-Domestic	132	146	161	178	197	216	237	259	284	310	345	384	426	473	524	580
Public Street Light	7	7	7	8	8	8	7	7	7	6	6	5	5	4	4	3
Agriculture (M + N + P))	1369	1572	1804	2069	2371	2518	2673	2834	3003	3179	3362	3552	3750	3953	4164	4487
Agriculture (F)	39	34	31	27	24	16	11	7	5	3	2	2	1	1	0	0
Industry (Small + Med)	71	74	77	80	83	84	84	85	85	86	86	87	87	87	88	93
Industry (L)	267	319	381	455	543	577	614	653	694	738	784	833	885	940	998	1050
PWW (S + M + L)	108	113	118	124	129	129	129	128	127	126	124	123	121	118	115	113
Mixed Load	80	83	86	90	94	97	101	105	109	113	117	121	125	129	133	134
Total electricity consumption	2343	2653	3007	3411	3871	4095	4331	4578	4833	5096	5378	5665	5954	6245	6540	6941

(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	297	324	350	377	403	430	457	483	510	536	563	590	616	643	670	696
Non-Domestic	168	188	208	228	248	268	288	307	327	347	367	387	407	427	447	467
Public Street Light	11	12	12	13	14	15	16	17	18	19	19	20	21	22	23	24
Agriculture (M + N + P))	1783	1943	2104	2264	2424	2585	2745	2905	3066	3226	3386	3547	3707	3867	4028	4188
Agriculture (F)	46	39	32	25	18	11	4	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	71	73	75	76	78	80	81	83	85	86	88	90	91	93	95	96
Industry (L)	162	170	178	185	193	201	209	216	224	232	240	248	255	263	271	279
PWW (S + M + L)	105	110	116	121	126	132	137	143	148	153	159	164	169	175	180	186
Mixed Load	76	79	81	83	85	87	90	92	94	96	98	101	103	105	107	109
Total electricity consumption	2720	2937	3155	3373	3591	3809	4026	4247	4471	4696	4921	5146	5370	5595	5820	6044

		Tab	le 145: Ba	armer and	d Jaisalm	er - Fore	cast of el	ectricity o	onsump	tion using	g econom	etric met	hod			
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	272	310	354	403	457	519	587	663	747	841	943	1056	1172	1292	1418	1552
Non-Domestic	122	133	145	158	172	187	203	219	237	256	276	297	320	343	369	396
Public Street Light	11	11	12	13	14	15	15	16	17	18	18	19	19	20	20	20
Agriculture (M + N + P))	1341	1482	1629	1781	1941	2105	2278	2454	2637	2827	3026	3230	3440	3658	3883	4116
Agriculture (F)	33	28	24	19	14	9	3	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	71	73	74	76	78	79	81	82	84	86	87	89	91	92	94	96
Industry (L)	273	331	397	471	556	652	761	885	1026	1183	1363	1565	1794	2052	2341	2669
PWW (S + M + L)	104	109	114	120	125	130	135	140	145	150	155	159	164	169	173	178
Mixed Load	76	78	80	82	84	86	88	91	93	95	97	99	101	103	105	107
Total electricity consumption	2302	2555	2830	3123	3440	3781	4152	4551	4986	5454	5965	6514	7101	7729	8404	9133

13.1.23. Bikaner

(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	378	415	453	493	534	570	604	636	664	687	709	721	718	700	668	624
Non-Domestic	129	141	155	171	187	204	223	242	264	287	318	352	389	429	474	524
Public Street Light	15	14	14	14	14	13	12	12	11	10	9	8	8	7	6	5
Agriculture (M + N + P))	2564	2895	3266	3681	4147	4386	4634	4893	5162	5441	5729	6026	6333	6648	6972	7513
Agriculture (F)	182	165	150	137	124	112	102	92	84	76	68	62	55	50	45	44
Industry (Small + Med)	129	134	139	145	150	150	150	149	149	148	148	147	147	146	146	155
Industry (L)	78	83	89	96	103	107	112	117	122	127	133	138	144	150	157	165
PWW (S + M + L)	139	145	151	157	163	167	172	176	180	184	187	190	192	194	195	191
Mixed Load	63	64	65	66	66	65	65	64	63	62	61	60	59	58	57	57
Total electricity consumption	3676	4057	4483	4958	5487	5775	6074	6382	6699	7022	7362	7705	8046	8383	8718	9278

			т	able 147	: Bikaner	- Forecas	st of elect	tricity cor	sumptio	n using H	IW metho	d				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	422	452	482	511	541	571	600	630	660	690	719	749	779	808	838	868
Non-Domestic	154	167	181	194	207	220	234	247	260	274	287	300	313	327	340	353
Public Street Light	24	25	26	26	27	28	28	29	30	30	31	32	32	33	34	34
Agriculture (M + N + P))	3470	3729	3988	4247	4506	4765	5024	5282	5541	5800	6059	6318	6577	6836	7095	7354
Agriculture (F)	255	259	263	266	270	274	278	282	286	290	294	297	301	305	309	313
Industry (Small + Med)	137	142	147	152	158	163	168	174	179	184	189	195	200	205	210	216
Industry (L)	79	83	88	93	98	102	107	112	116	121	126	131	135	140	145	149
PWW (S + M + L)	140	146	153	160	167	173	180	187	193	200	207	214	220	227	234	240
Mixed Load	65	67	69	71	73	75	77	79	81	83	85	87	89	91	93	95
Total electricity consumption	4745	5070	5395	5721	6046	6371	6696	7021	7346	7671	7996	8322	8647	8972	9297	9622

			Table	148: Bika	aner - Foi	ecast of	electricity	y consum	ption usi	ng econo	ometric m	ethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	361	391	422	453	485	517	550	583	616	649	681	712	738	758	776	790
Non-Domestic	115	125	136	148	160	173	187	201	217	233	251	269	289	310	332	356
Public Street Light	24	25	25	26	26	27	27	28	28	29	29	29	29	29	29	29
Agriculture (M + N + P))	2332	2664	3028	3419	3847	4306	4808	5345	5927	6555	7241	7975	8767	9622	10544	11538
Agriculture (F)	183	188	193	199	204	210	215	221	227	232	238	244	250	256	262	268
Industry (Small + Med)	130	137	143	150	157	165	173	181	190	199	209	219	230	241	252	265
Industry (L)	77	82	88	95	101	108	115	123	131	139	148	157	167	177	188	199
PWW (S + M + L)	139	146	153	160	167	174	182	190	197	205	213	221	229	237	245	253
Mixed Load	64	66	68	70	72	74	76	77	79	81	83	85	87	89	91	93
Total electricity consumption	3424	3823	4256	4718	5219	5753	6332	6949	7612	8322	9093	9912	10785	11719	12719	13791

13.1.24. Sri Ganganagar

			Table [•]	149: Sri G	anganag	ar - Fore	cast of el	ectricity o	consump	tion using	g trend m	ethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	521	563	605	648	691	727	760	789	811	826	840	843	827	794	746	697
Non-Domestic	124	137	151	166	183	201	219	239	261	284	315	350	387	428	473	524
Public Street Light	6	6	7	8	8	8	8	8	7	7	7	6	6	5	5	4
Agriculture (M + N + P))	128	144	162	182	204	210	216	222	228	234	239	245	251	256	261	281
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	51	51	52	53	54	54	55	56	57	58	58	59	60	61	62	65
Industry (L)	109	114	119	124	129	133	137	140	144	148	152	156	160	164	168	177
PWW (S + M + L)	23	24	25	27	28	30	32	35	37	40	44	48	52	58	64	71
Mixed Load	74	74	75	75	76	76	76	77	77	77	77	77	77	77	77	77
Total electricity consumption	1035	1113	1196	1283	1374	1439	1503	1565	1622	1674	1732	1783	1819	1842	1856	1896

			Table	e 150: Sri	Gangana	gar - For	ecast of e	electricity	consum	ption usi	ng HW m	ethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	590	635	680	724	769	814	858	903	948	992	1037	1082	1126	1171	1216	1261
Non-Domestic	147	161	176	191	206	221	236	251	265	280	295	310	325	340	355	369
Public Street Light	6	6	7	8	8	9	9	10	10	11	11	12	12	13	14	14
Agriculture (M + N + P))	194	196	197	199	200	201	203	204	206	207	208	210	211	213	214	215
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	62	62	63	65	69	74	79	85	92	99	107	115	124	133	143	153
Industry (L)	114	131	145	157	168	177	186	195	203	210	0	0	0	0	0	0
PWW (S + M + L)	39	41	42	43	44	45	46	46	47	47	48	48	48	48	48	48
Mixed Load	78	80	81	83	85	86	88	90	91	93	94	96	98	99	101	103
Total electricity consumption	1230	1312	1391	1470	1549	1627	1705	1783	1862	1940	1801	1873	1945	2017	2090	2163

			Table 151	: Sri Gan	ganagar ·	- Forecas	t of elect	ricity con	sumptior	n using ea	conometr	ic method	ł			
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	515	557	602	647	692	739	786	833	881	928	974	1020	1056	1086	1111	1133
Non-Domestic	130	147	166	186	207	225	245	265	287	310	334	360	387	416	446	487
Public Street Light	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture (M + N + P))	139	142	145	148	151	154	157	160	163	166	169	172	175	178	181	185
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	49	49	49	49	49	49	49	49	49	49	49	48	48	47	47	46
Industry (L)	114	131	144	156	167	176	185	193	201	209	0	0	0	0	0	0
PWW (S + M + L)	38	40	42	43	44	45	45	46	46	46	46	46	46	46	46	46
Mixed Load	77	79	81	82	84	85	87	88	90	91	93	94	96	97	99	100
Total electricity consumption	1069	1146	1229	1311	1394	1474	1554	1635	1717	1799	1665	1740	1809	1871	1931	1996

13.1.25. Hanuman	garh
------------------	------

			Table	152: Han	umangar	h - Forec	ast of ele	ctricity c	onsumpt	ion using	trend me	ethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	394	424	454	485	515	550	584	615	642	664	685	697	694	677	646	603
Non-Domestic	74	81	88	96	105	116	127	141	155	170	191	214	239	267	299	331
Public Street Light	4	4	5	5	5	5	5	5	5	5	5	4	4	4	4	3
Agriculture (M + N + P))	424	476	535	601	674	711	749	788	828	870	913	958	1003	1050	1097	1183
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	34	35	36	37	37	38	39	40	40	41	42	43	44	44	45	48
Industry (L)	39	39	40	41	42	42	43	44	45	46	46	47	48	49	50	52
PWW (S + M + L)	50	55	60	65	71	73	76	78	80	82	84	85	87	88	89	87
Mixed Load	4	4	4	4	4	4	4	4	4	4	4	3	3	3	3	3
Total electricity consumption	1022	1118	1221	1333	1452	1539	1626	1713	1799	1881	1969	2052	2123	2183	2232	2310

			Tabl	le 153: Ha	numanga	arh - Fore	ecast of e	lectricity	consump	tion usin	ng HW me	thod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	441	475	510	545	580	614	649	684	719	753	788	823	858	892	927	962
Non-Domestic	93	102	111	120	128	137	146	155	164	172	181	190	199	208	216	225
Public Street Light	4	4	5	5	5	5	5	6	6	6	6	6	7	7	7	7
Agriculture (M + N + P))	603	624	646	667	689	710	732	753	774	796	817	839	860	882	903	924
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	33	33	33	33	32	32	32	32	32	32	32	32	31	31	31	31
Industry (L)	32	32	32	31	31	31	31	31	31	30	30	30	30	30	30	30
PWW (S + M + L)	45	39	37	37	37	38	39	41	42	44	47	49	52	54	57	60
Mixed Load	5	12	10	16	18	17	5	4	4	4	5	12	10	16	18	17
Total electricity consumption	1256	1322	1383	1453	1520	1585	1640	1705	1771	1838	1907	1980	2047	2119	2189	2256

						Forecast										
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	397	432	468	504	541	580	618	657	696	735	772	810	840	865	886	905
Non-Domestic	77	88	100	113	127	142	158	175	194	214	235	258	283	309	338	368
Public Street Light	4	4	5	5	5	5	5	5	6	6	6	6	6	6	6	6
Agriculture (M + N + P))	424	461	500	539	581	624	669	714	762	811	863	915	970	1026	1084	1144
Agriculture (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Industry (Small + Med)	33	33	32	32	32	32	32	32	32	32	32	31	31	31	31	31
Industry (L)	32	32	31	31	31	31	31	31	30	30	30	30	30	30	29	29
PWW (S + M + L)	49	54	58	62	66	69	73	77	80	84	87	90	93	96	99	101
Mixed Load	5	11	10	16	18	17	5	4	4	4	5	11	10	16	18	17
Total electricity consumption	1021	1114	1204	1302	1401	1499	1591	1695	1803	1914	2030	2152	2263	2379	2491	2600

13.1.26. Churu

(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	313	337	362	386	411	434	456	475	491	503	514	518	511	493	465	434
Non-Domestic	74	82	90	99	109	120	132	145	159	174	195	217	242	270	300	332
Public Street Light	7	7	8	8	9	9	9	9	10	10	10	10	9	9	8	7
Agriculture (M + N + P))	787	856	930	1010	1096	1129	1162	1195	1228	1261	1294	1326	1357	1388	1418	1528
Agriculture (F)	93	78	65	55	46	38	32	27	22	18	15	13	11	9	7	7
Industry (Small + Med)	41	43	45	47	49	52	54	56	59	62	64	67	70	73	77	81
Industry (L)	28	31	33	36	40	41	42	43	44	45	47	48	49	50	52	54
PWW (S + M + L)	120	125	130	135	140	142	143	144	145	146	146	146	145	144	143	140
Mixed Load	6	6	6	5	5	5	5	5	5	5	5	5	5	5	5	5
Total electricity consumption	1470	1565	1669	1782	1904	1969	2035	2100	2164	2224	2289	2349	2399	2441	2474	2589

				Table 156	6: Churu -	Forecast	t of electr	ricity con	sumption	using H	N method	1				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	347	369	392	415	438	460	483	506	528	551	574	597	619	642	665	688
Non-Domestic	88	93	98	103	108	113	117	122	127	132	137	142	147	152	157	162
Public Street Light	10	11	13	14	15	16	18	19	20	22	23	24	25	27	28	29
Agriculture (M + N + P))	909	967	1024	1081	1138	1195	1253	1310	1367	1424	1481	1539	1596	1653	1710	1767
Agriculture (F)	59	49	41	34	27	22	17	12	8	4	0	-3	-6	-9	-12	-14
Industry (Small + Med)	44	46	48	50	52	53	55	57	59	61	63	65	67	69	71	72
Industry (L)	31	35	39	44	48	53	57	62	66	70	75	79	84	88	93	97
PWW (S + M + L)	124	130	136	142	148	155	161	167	173	179	185	191	198	204	210	216
Mixed Load	8	8	9	10	11	12	13	14	14	15	16	17	18	19	20	20
Total electricity consumption	1619	1708	1800	1892	1985	2079	2173	2268	2363	2459	2555	2651	2747	2844	2941	3038

			Table	e 157: Ch	uru - For	ecast of e	electricity	consum	ption usi	ng econo	metric me	ethod				
(MUs)	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22	FY 23	FY 24	FY 25	FY 26	FY 27	FY 28	FY 29	FY 30	FY 31	FY 32
Domestic	307	333	360	388	417	446	477	508	540	572	604	636	663	687	708	726
Non-Domestic	60	68	77	86	95	105	116	128	141	154	169	184	200	218	237	257
Public Street Light	10	11	12	14	15	16	17	18	19	20	21	22	23	24	24	25
Agriculture (M + N + P))	807	892	984	1081	1185	1296	1414	1539	1672	1814	1966	2126	2297	2477	2670	2874
Agriculture (F)	42	36	30	25	21	17	13	9	6	3	0	-3	-5	-8	-10	-12
Industry (Small + Med)	40	41	43	44	45	47	49	50	52	54	56	59	61	64	66	69
Industry (L)	30	35	39	44	48	52	57	61	66	70	74	79	83	88	92	96
PWW (S + M + L)	114	117	118	119	120	119	118	116	114	110	105	99	92	83	73	62
Mixed Load	8	8	9	10	11	12	13	13	14	15	16	17	17	18	19	20
Total electricity consumption	1419	1542	1673	1810	1957	2111	2274	2445	2624	2812	3012	3219	3432	3651	3879	4116

13.2. Sample data formats

1. Format for capturing daily disruption in supply hours at circle/sub-division level.

Data source: SE (Meters) or department that is responsible for Metering, Testing and Issuance of meters in Utilities

The data accessed for the present study for supply hours had either disruption counts or average disruption in a feeder per day. There was no mention of categories served to, whether disruption was in peak or-non peak hours and the reason of failure was not specified. Hence, the same have been added to the suggested format, so that complete data can be captured for analysis.

Existing format

Circle Name	Sub-division name	Feeder name	Date 1	Date 2	Date 3	Date 4	Date 5

Suggested format - data to be captured for each day

Date	Circle/ Sub- division Name	Feeder name	Feeder level	Urban/ Rural	Consumer category to which it is tagged	Feeder Switch Off time	Feeder load before interruption/ Last recorded hourly value of load	Feeder Switch On time	Feeder load after restoration/ interruption	Supply disruptio n (in minutes) Peak	Supply disruption (in minutes) Non Peak	Reason of Failure. Data sheet should have options to select/ capture reasons 1. DT Failure 2. Feeder breakdown 3. Scheduled load shedding 4. Capacity constraint 5. Others

2. Sales/ Connected load/ Number of consumers at Circle level/ Sub-division level to be captured for each month Data source: Respective Circles/ Commercial department Data is captured in the given format presently. Existing format can be continued to capture data

Existing format

Consumer Categories	Urban/ Rural	April	Мау	June	July	August	Sept	Oct	Nov	Dec	Jan	Feb	Mar

3. Load factor – capture at granular level wherever possible

Data source: State SLDC

Load factor data pertaining to consumer categories across months are not available. The data accessibility should be provided in case such data was already captured.

Average Consumer **Urban**/ April May June July August Sept Oct Nov Dec Jan Categories Supply Rural duration (Hr) Domestic 0.71 0.75 0.69 Industry 0.30 0.32 0.33

Suggested format to capture load factor

Mar

Feb

4. Details of Open Access and Captive consumers (Load in MW, Electricity in MUs to be captured) Source: Commercial department of Utilities, Energy Department Data for open access across months are maintained in given format. Data for captive power plants should also be captured on a monthly basis in given format.

Details of Open Access consumers	Feeder level (33kV/ 11kV)	Load	April	Мау	June	July	August	Sept	Oct	Nov	Dec	Jan	Feb	Mar
M/s ABC														
M/s DEF														

Existing format for OA. To be used for Captive consumers also

5. Format for new Connections added per month for all categories – Domestic, Commercial, HT/ bulk consumer (Industries, SEZ, Government establishments, Housing complexes etc.)

Source: HT Billing, Metering department, Energy department

Data in suggested format should be made available across portals. Currently there is no specific format available.

Suggested format

Circle	Sub-division	Connection applied in Month/ Year	Name of Consumer	Contract Demand	Supply Voltage	Expected Month/ Year of load	Connection approved/ released (Yes/ No)

6. Monthly details of Agriculture connections released/ Solar pumps etc. installed

Source: Commercial Department, Energy department

The data pertaining to number of connections are captured along with average load of pumps. Detailed list of connections in suggested format should be captured for record of the utilities/ Government.

Suggested format

Circle	Sub-division	Agriculture Connection issued	Name and details	Contract Demand	Supply Voltage	Capacity of pump (solar, non-solar etc.)

7. Monthly/ Quarterly data for Independent variables – Data at District/ Circle level

Source: Government Planning Department, Economics and Statistics department Yearly data of variables are available at a State level. In case it is captured on a monthly/ quarterly basis at a more granular level, it can be utilized for monthly forecasts.

Suggested format

Independent variables	State/ District	April	Мау	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar
Population													
Per capita income													
Disposable income													
Consumers													
WPI/CPI													
Wages													